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I Motivation

Because land and funding are limited, public housing is rationed. Much atten-
tion has been placed on how to best allocate public housing, but an equally im-
portant question is what type of housing to build.1 These decisions are not made
arbitrarily: governments can infer which developments are more desirable using
past realizations of demand. When deciding what apartments to build and how to
allocate them, a public housing authority must contend with two objectives: min-
imizing vacancies and matching households to the apartments they desire. In this
setting, how can a government better build and allocate public housing? To answer
this question, we form a dynamic queuing model motivated by the Singaporean pub-
lic housing system, which houses 80% of the resident population.2 We characterize
the government’s strategy when supply is endogenous and evaluate the welfare loss
when supply is exogenous. We show that building underdemanded apartments is
crucial to ensure incoming households report their types truthfully. Furthermore,
higher demand can improve allocative efficiency when supply is endogenous. In
contrast, when supply is exogenous, allocative efficiency is reduced when demand
increases. A key takeaway of our results is that batching multiple applications to-
gether is highly desirable because households face less aggregate uncertainty, and
are thus more willing to apply sincerely, improving allocative efficiency.

The first contribution of this paper is to develop a model that explores the link
between revealed demand and hidden preferences, when the demand responds to
supply. Due to the wait times for housing assistance, households may choose to
take a less desirable apartment today in lieu of their preferred option in the future.
We examine the circumstances under which manipulated applications are preva-
lent—applications where households apply to a queue that does not contain their
most preferred apartment. We show that, under exogenous supply, manipulated

1See e.g., Waldinger (2021) and Van Dijk (2019) for empirical work pertaining to Cambridge,
MA and Amsterdam; and Arnosti and Shi (2020) for a theoretical treatment.

2Singapore is an important case study because of the size of its public housing market. Over
80% of Singaporeans live in government-built housing. In 2019, more than 15,000 apartments were
transacted; each with a sticker price of at least US$200,000. These figures imply that over US$3
billion were transacted in apartment value of government-built housing, suggesting large potential
gains to improvements in efficiency.
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applications occur when one queue “overflows” and households of that type apply
for the underdemanded apartment. In our solution to the government’s dynamic
problem under endogenous supply, the optimal mechanism is limited by the reverse
issue; the designer’s binding constraint comes from households who desire under-
demanded apartments. The government prefers to only build apartments in high
demand; but if the government does so, it cannot motivate households to apply sin-
cerely. Hence, the government trades off exploiting its knowledge about current
demand against learning about the preferences of incoming households.

To further motivate why the optimal mechanism prescribes supplying less-
demanded apartments, consider an environment where households care both about
match quality and about match timing. If a household knows only apartments in
high demand will be built, it will be tempted to manipulate its report if it prefers
an apartment type that is rarely demanded and thus built infrequently. Were that
household to enter the queue for its desired apartment, it would need to wait for at
least one allocation period before having the chance to receive an apartment. Then,
unless the cost of waiting is small, the household prefers to enter the queue for
apartments that are more likely to be built.3

In Section III, we propose a dynamic model of public housing allocation in
which supply can be adjusted over time. At the beginning of each period, the gov-
ernment observes previous household applications, then decides how to allocate
new housing across apartment types, where types reflect both apartment size and
location. Simultaneously, a household arrives with a private type, corresponding
to the apartment type that the household prefers. Newly arrived households select
one type of apartment to apply for.4 When a queue has more applicants than avail-
able apartments, the available apartments of that type are randomly allocated. If a
household is allocated an apartment, both exit the market. Otherwise, the house-
hold pays a waiting cost and applies again in the next period. The government

3Importantly, in Singapore, most applicants’ alternatives to receiving an apartment are living
with family or renting. While non-trivial, for most Singaporeans, the cost of being unmatched for
an additional period is far less than it would be in other public housing settings. For instance, in the
US, public housing is primarily used as an alternative to homelessness.

4Here, in line with the real-world BTO mechanism, the government can only observe applica-
tions to queues. Our approach contrasts with the standard paradigm in mechanism design, in which
the designer observes agent types directly through the revelation principle.
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aims to minimize a convex combination of two types of inefficiency: allocation and
unassignment. Allocation inefficiency captures the government’s desire to assign
households to apartments of their type. Unassignment inefficiency reflects the gov-
ernment’s aim to minimize the number of households that remain unmatched in a
given period.5

Using data on Singaporean housing applications, we undertake descriptive anal-
ysis in the appendix to show that our focus on strategic behavior is empirically jus-
tified. We have suggestive evidence that households strategically apply to queues.
Furthermore, in informal conversations with government officials, we found that the
government takes past demand into account when determining where to build new
developments. Our descriptive findings aid us in characterizing the nature of the
government’s optimal strategy in this mechanism, but leave us short on the specifics.
In view of the government’s responsiveness to past information and households’
strategic applications, we utilize the dynamic model to deepen our understanding
of the contrast between settings with exogenous and endogenous supply. In the
model, the government responds optimally to applicant behavior, and vice versa.

To ground our analysis, we focus our attention on the Singaporean mechanism,
the Build-To-Order scheme (BTO), which we describe in Section II, though the in-
sights apply more broadly. The Singaporean setting is of interest to policymakers
and academics alike because the market for public housing is large, and the associ-
ated policy problem is highly nontrivial. We show in Section III.A that the optimal
unconstrained mechanism is a first-in-first-out mechanism, and detail why the gov-
ernment stopped using a first-in-first-out mechanism because of historical and other
policy concerns.6 Accordingly, our model differs from standard mechanism design.
We restrict the space of policies, only allowing the government to utilize lottery
mechanisms, focusing our attention instead on the optimal supply.

As alluded to beforehand, to assess the importance of endogenous supply, we

5Allocation inefficiency is standard in the literature, and unassignment generates vacancies which
are expensive to maintain. We elaborate on the government’s historical incentive to minimize unas-
signment in Section II.

6In practice, a household can be given priority in a few specific instances. For example, if a
household has previously been rejected twice, then applies for a flat in a young (“non-mature”)
neighborhood, they are favored in the lottery. Since non-mature queues are likely to be undersub-
scribed in the first place, we abstract from non-constant priorities in our model.
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also consider an analogous setting in which supply is exogenous. With exogenous
supply, vacancies and inefficient allocation occur even under arbitrarily high levels
of patience. We analyze this setting and show that under exogenous supply, alloca-
tive inefficiency is strictly higher than it would be under the optimal mechanism
with endogenous supply in all parameter regions.

Our second contribution is to add to a growing literature on thickness in dy-
namic markets. We characterize when batching multiple application cycles is op-
timal. We examine the effect of various forms of competition, both when supply
is endogenous and when it is exogenous.7 We show that when the government can
control the supply of housing, oversubscription improves the ability of the govern-
ment to generate responsive mechanisms.8 While oversubscription increases both
market thickness and competition, the increase in thickness enables the government
to manipulate the expected wait times between different queues. This policy lever
increases the willingness of households to apply sincerely, improving allocative ef-
ficiency. In contrast, when the apartment supply is exogenous, the overwhelming
impact of competition is to increase expected wait times. Thus, competition exacer-
bates the inefficiencies of the exogenous setting, increasing the disparities between
the exogenous setting and the endogenous setting. We utilize this insight to show
that, in the optimal mechanism, thickness is artificially generated in the market
by batching applications. After the initial dissemination of our results, in 2024, the
Singaporean government increased the level of batching, changing from four cycles
per year to three.9

While we focus our attention on the BTO mechanism in this paper, we note
there exist several other instances wherein a centralized planner must choose the
supply of a good with incomplete preference information. For instance, consider
class schedules. Electives are often substitutable for students, and faculty may be
reallocated to address demand spikes. Thus, schools face a year-over-year decision

7We refer to environments where households anticipate low odds of success in the queuing lottery
as competitive. Oversubscription refers to environments where the average ratio of households to
available apartments is high.

8A responsive mechanism is one where different preferences of incoming households lead to
different allocations, i.e., the government responds to preferences.

9See https://www.straitstimes.com/singapore/housing/19600-bto-flats-to-g
o-on-sale-in-2024-over-three-exercises-instead-of-four-desmond-lee for details.
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regarding which electives to offer and the capacity of each course. The trade-offs in
class scheduling are similar to those considered in the BTO mechanism. Strategic
preference reporting in also a factor in this setting, as exemplified by class selection
at the Harvard Business School (Budish and Cantillon 2012).

Another surprising example can be found in the area of food donations. Pren-
dergast (2016) and Altmann (2024) examine an innovation in the allocation of food
donations by Feeding America, the second-largest American charity by revenue.
In 2005, a market was established with “Monopoly money” to improve the distri-
bution of food among food banks across the US. Prior to the introduction of the
market, food banks had a fixed food need by weight, and received “take it or leave
it” offers commensurate with their need levels. These offers made no allowance
for the type of food, be they produce or pasta. However, these food types featured
real differences in storage needs; often, individual food banks received food dona-
tions outside the Feeding America system. One primary goal of the new market
was to ensure that food banks could bid on the types of food they actually wanted
when they wanted. Equally important, upon observing the relative pricing of foods,
Feeding America was able to then structure its fundraising requests to increase the
quantity of highly demanded food types.

One key difference between the Singaporean public housing system and Feed-
ing America is that the Singaporean government does not allocate apartments by an
applicant’s willingness to pay, because they believe that housing assistance should
not necessarily be disbursed to the highest bidder. In this paper, we will take it for
granted that a market equilibrium will not achieve the government objective. In-
stead, we focus on finding the mechanism that minimizes inefficiency subject to the
government’s outside constraints.

Related Literature

A large literature, focusing on the optimal allocation of scarce resources, has
improved the design of markets ranging from kidney exchange to school choice.
Standard models in this literature have centered primarily on markets where the
supply of the scarce resource is exogenous. For instance, a designer of a kidney
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allocation scheme cannot choose the blood types of the organs entering the system.
Importantly, under traditional allocation mechanisms, the supply remains fixed and
independent of agent preferences. However, in many markets, a centralized agency
may control both the incoming supply of goods and the allocation of goods to
agents. In this paper, we will focus on how in public housing, the government
can control the type of apartments built and the allocation of apartments.

This paper speaks to the theoretical literature in matching, much of which stems
from studying the problem of optimal student assignment to schools (Abdulka-
diroğlu and Sönmez 2003). See Abdulkadiroğlu and Sönmez (2013) for a survey.
Within this literature, our paper is most closely related to papers on optimal dy-
namic matching. In this context, agents are “born” in sequence and face a trade-off
between taking their best option at birth and waiting for a better match (Baccara,
Lee, and Yariv 2020). In this setting, a mechanism designer may wish to focus on
increasing market thickness over matching agents myopically (Akbarpour, Li, and
Gharan 2020). We show that this insight carries over to our setting, even when the
good is produced endogenously.

In particular, we offer a new take on the queuing literature. The vast majority of
this literature focuses on the allocation of a fixed supply of goods, such as organs.
Recent work in this literature include Shi (2022), which examines the optimal prior-
ity system to allocate agents to objects; and Agarwal et al. (2019), which develops
a new allocation mechanism. Thakral (2019) shows that an ex-post efficient mech-
anism under stochastic supply need not exist. In these papers, the supply remains
exogenous; the mechanism designer cannot control or alter the inflow of goods. In
this paper, we consider the impact of relaxing the assumption of exogenous supply
and allow the designer to freely control the types of arriving goods.

Closely related to our work, Leshno (2022) characterizes the optimal mecha-
nism when goods arrive according to an exogenous process. We study a different
class of markets in which the designer can not only control the allocation proce-
dure, but also the arrival rate of each good. We show that several of his insights are
due to this exogenous process, giving rise to different policy prescriptions for social
planners with endogenous supply. For instance, while increased household demand
decreases allocative efficiency in the exogenous supply setting, it actually improves
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the government’s ability to manipulate wait times in the endogenous setting. We
explore these phenomena in Section V.

Several other recent papers consider dynamic allocation problems with private
information when monetary transfers are not permissible. Verdier and Reeling
(2022) examine the allocation of bear hunting licenses and show that a dynamic
mechanism which repeatedly allocates licenses to the same individuals can improve
matching over a static mechanism. In our context, individuals only require one
apartment, making this approach impractical. Guo and Hörner (2020) consider re-
peated good allocation to a single agent whose valuation fluctuates over time. Gali-
chon and Hsieh (2018) shows that as long as money burning is permissible, stability
can be achieved in many settings with private information. Li (2018) describes the
Beijing car permit lottery, which exhibits several similarities to our setting. Agents
must enter a lottery to earn the right to drive their car in the city. Those who fail
to win the lottery, must try again in a future period without any seniority-related
privilege, or acquire a permit from outside the city with restrictions on where they
are permitted to drive.

Last, in our companion work (Lee et al. 2024), we harness administrative micro-
data from the BTO mechanism to construct and estimate a dynamic choice model
over housing lotteries. Using this model, we are able to answer a separate question:
what is the impact of increasing the total supply of housing on wait times, vacan-
cies, and prices on the aftermarket for government housing? In a version of that
paper using aggregate data (Lee, Ferdowsian, and Yap 2023), we find that simply
increasing the housing supply can fail to reduce wait times, because the resulting
demand response eclipses the supply increase. Indeed, improving the allocation
procedure complements increasing supply. Specifically, when combined with a
strategyproof mechanism, increasing supply can keep wait times low and reduce
upward pricing pressure on the aftermarket.
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II Policy Background

II.A The Build To Order Scheme

About 80% of resident households in Singapore live in government housing,
which makes up 80% of the housing stock in Singapore. These apartments, num-
bering over 1 million, are administered and maintained by the Housing and Devel-
opment Board (HDB). In Singapore, since 2001, all government apartments have
been first introduced into the housing stock via the BTO scheme. Under BTO, each
quarter, the government announces several new developments to be built, to which
households may apply to at most one. Apartments in oversubscribed developments
are rationed by lottery.

The BTO scheme superseded the previous Registration for Flats System (RFS),
a first-in-first-out waitlist. Under RFS, homebuyers first chose the broad geograph-
ical area in which they wanted to live, then were informed of the cost and exact
location of the apartment when their queue number was called. Not only did buy-
ers not know when they could move in to their apartment, but they also had to
pay the down payment for any home loan when their apartment was completed.
Some apartments were finished early, which led to several of these buyers not rais-
ing enough funds for their down payments. The Asian Financial Crisis in the late
1990s exacerbated this issue. The government suddenly found itself with a sur-
plus of vacant housing, and incurred heavy maintenance fees. Soon after the crisis,
the government switched from RFS to BTO. The key difference between the two
mechanisms is that, under RFS, households need only apply once to a queue that
serves earlier applicants first; whereas under BTO, households must reapply every
quarter. BTO ensured that current applications were a more accurate representation
of current demand. This history motivates our modelling restriction that precludes
the government from using allocation mechanisms that reward seniority.10

10The HDB allocates its apartments through a complex system of allocation processes, which we
tackle in our companion work (Lee et al. 2024). BTO is the scheme through which most apart-
ments in Singapore are initially allocated. For instance, in Financial Year 2013/2014, there were
86,298 BTO residential units under construction. Under the next largest comparable scheme then,
“Design, Build and Sell”, only 3,893 units were under construction as of 2014 (Housing and De-
velopment Board 2014). By Financial Year 2018/2019, all residential units under construction were
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Introduced in April 2001 and taking place each quarter, the BTO exercise al-
lows potential homeowners to ballot for their preferred neighborhood and apartment
size. Each such ballot, termed a “booking”, is secured by a down payment due on
application. After the application phase, the HDB assigns each applicant a queue
number, indicating the number of other applicants ahead of her in the queue.11 If,
when her turn arrives, she does not like any of her choices (or has none), she may
withdraw her application, after which she may participate in a future cycle. Upon
withdrawing, her position in the queue is lost and not preserved for future applica-
tions. Furthermore, households that have withdrawn more than once incur severe
penalties to their priority in future applications. Given that apartments of a similar
size are similarly furnished, this observation motivates our assumption that house-
holds who apply to an apartment size and are successful always accept.

After all applicants to a project have either selected an apartment or withdrawn
their application, the HDB begins building if 70% of all apartments in a develop-
ment have been allocated. In practice, BTO apartments of all sizes are oversub-
scribed, most by at least 2-3 times. To our knowledge, all BTO exercises have
successfully reached the construction stage. These apartments are typically ready
for homebuyers to move in within 3-5 years of the corresponding BTO exercise. To
prevent immediate arbitrage, apartments may not be sold on the secondary market
before 5 years have elapsed after the initial move-in.

These apartments are often oversubscribed because they are sold at highly sub-
sidized prices, resulting in selection into BTO from the private market.12 Buyers
with higher incomes default to the private market because they may be ineligible to
apply for BTO apartments, or are eligible but receive much lower subsidies than the
poor do. Thus, private market prices reflect the preferences of a selected sample of
Singaporeans, which do not necessarily represent those of the households the BTO

BTO apartments (Housing and Development Board 2019).
11To enforce social mixing, there are ethnic quotas for each housing development. This aspect of

the housing system has been extensively studied in previous work (see Wong [2013, 2014]), so we
will abstract from these concerns.

12In this paper, our use of “private market” conflates used government apartments sold on a sec-
ondary market (“resale flats”) with private apartments and houses. Papers that model the market for
resale flats include Wong (2013) and Lee et al. (2024).
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scheme serves.13

III Model

The descriptive facts suggest that the Singaporean government responds to de-
mand, but leave us short on how it should design a responsive mechanism when
supply is endogenous. We develop a model to fill in this gap.

We model an allocation mechanism with endogenous supply of goods, akin
to the Singaporean BTO mechanism. Time is discrete with an infinite horizon,
t ∈ {0,1,2, . . .}. The agents are young households born with preferences over the
goods, apartments. Each period, one household arrives. The government has no
apartments available at t = 0, but builds one apartment in every subsequent period.
Apartments and households can be of |Θ| = 2 types, Θ = {A,B}.14 We use θt to
denote the type of the arriving household in period t, and φt to denote the apartment
built in that period. Household types are private information, unknown to the gov-
ernment. A household that is matched to an apartment of the same type receives
utility h. A household that is matched to an apartment with a different type receives
utility l < h. A household that is not matched incurs a flow cost of waiting, c, and
remains in its queue. In Appendix D, we show that the mechanisms presented in
the body of the paper remain optimal when households can change queues between
periods, as they can in the actual BTO mechanism.

There is one queue for each type of apartment. The two queues will be referred
to as queue A and queue B. At the beginning of each period, all agents are informed
of the number of households and apartments in each queue. An incoming household
chooses the queue it wishes to enter. We denote the queue choice of the period-t

13Despite the hefty subsidies given to successful BTO applicants, a government official we spoke
with noted that only about 10% of BTO buyers sell their apartments within 5 to 10 years of purchase.
While there is an incentive for arbitrage, this opportunity may only be available to households that
are not capital constrained.

14In Appendix A, we show that our results are robust to differing intensities of apartment pref-
erences. For example, some agents may have strong preferences over apartment type, while others
prefer to minimize wait times. We also consider a version of the model with three types of apart-
ments in Appendix G. We show that the optimal mechanism is qualitatively similar to the case with
two types.
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Figure 1: Market Timing.
Notes: One household of uncertain type arrives. Then, simultaneously, the household
chooses an apartment queue to join, while the government decides what kind of apartment
to build. Apartments are allocated to households in each queue by uniform random lottery.
Unmatched households pay a wait cost and remain in their queues till the next period.

household by dt ∈ {A,B}. Before observing the incoming household’s choice, the
government chooses ΦA

t ∈ [0,1], the probability with which φt = A.15 The timing
of the market is summarized in Figure 1.

The government’s strategy must satisfy queue-anonymity: it must treat house-
holds within a single queue identically, without regard to their seniority in the
queue. If an apartment is available and at least one household is in the correspond-
ing queue, that apartment is randomly allocated through a uniform distribution to
one of the households in the corresponding queue. For instance, if k households are
in queue φ , and there are m ≤ k type-φ apartments, each household in queue φ has
the same m/k probability of receiving an apartment.

We use st = (sA,sB) ∈ Z2 to denote the net demand of the market in the be-
ginning of period t. For sφ > 0, sφ denotes the number of households in queue
φ . Otherwise, queue φ has no households and −sφ denotes the number of va-
cant type-φ apartments. The public history at the beginning of time t is Ht =

(d0,d1,φ1, . . . ,dt−1,φt−1) ∈ {A,B}2t−1.

Definition 1. A mechanism µ is a sequence of functions {ΦA
t }∞

t=1, where each ΦA
t

maps public histories to an assignment probability: ΦA
t : Ht → [0,1].

We assume the government has commitment power and declares the mechanism
15The HDB chooses the location of upcoming developments at least two cycles in advance, im-

plying that the government must choose ΦA
t before observing household applications for the current

cycle.
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µ at the beginning of time. We will focus on Markovian mechanisms that condition
only on payoff relevant variables, summarized by the state.16 Accordingly, where
appropriate, we drop time-scripts. The payoff-relevant information in the public
history can be summarized by the state st . Then, a strategy for the government can
be summarized by ΦA : Z2 → [0,1].17

In state s, W µ

φ
(s) will be used to denote the expected wait time for an incoming

household that enters queue φ . Similarly, wµ

φ
(s) denotes the expected wait time at

the beginning of the period for a household already in queue φ when the state is s.
We will drop the reference to the mechanism when the context poses no confusion.

The expected utility in state st = (sA,sB) for a household that enters queue φ

is the match benefit from a type-φ apartment minus expected waiting costs from
queue φ :

U(dt ,θt ,st) = Eµ

[
l +1{dt=θt}(h− l)− c1{sdt>0}

sdt

sdt +1
(1+wdt (st+1))

]
.

When a household enters the queue of its type, we will say it has applied sin-

cerely. A household only applies sincerely if doing so maximizes its utility:

θt ∈ argmax
dt

U(dt ,θt ,st).

The government’s objective depends on two elements: the quality of matches
and the frequency of unassignment. Since there is always one more household than
available apartments, there will always be a minimum of one unassigned household
in every period. To normalize the measure of inefficiency, we only consider unas-

16The motivation for the mechanism’s restriction to being Markovian comes directly from the
setting. In interviews with Singaporean housing applicants and anonymous officials from HDB, we
learned that the BTO mechanism hews closely to being Markovian to disincentivize the non-needy
from gambling for an apartment with high resale potential. In the appendix, we show that in settings
with higher degrees of oversubscription, non-Markovian mechanisms can outperform the optimal
Markovian mechanism.

17A brief comment on our approach is warranted. Rather than consider the general mechanism
design problem, with associated individual rationality and incentive compatibility constraints, we
consider the induced market game wherein households take the government’s strategy as given and
play against one another. In Section IV.C, given the government’s choice of mechanism, we show
that the government’s outcome parameters of interest are well-defined and unique.
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signment above the baseline of one household. In this context, counting the number
of vacant apartments is equivalent to counting the number of excess unassigned
households. We will use the two measures interchangeably, except in Section V.C
where the difference between the two measures is relevant.

Because we do not know exactly how the Singaporean government ranks these
two sources of inefficiency in practice, we characterize the solution to the gov-
ernment’s problem for all possible weightings of allocation and unassignment in-
efficiency. The government aims to minimize total inefficiency, with weights α

and 1−α placed on allocation and unassignment inefficiency respectively. This
formalization can describe a utilitarian government which aims to maximize house-
hold welfare, but also covers more general cases. If the period-t household and the
period-τ apartment are matched, the match generates 1θt ̸=φτ

allocation inefficiency.
Then, mt , the level of allocation inefficiency in period t, is simply the number of
households that did not apply sincerely in some period that were matched in pe-
riod t. Similarly, we define the unassignment inefficiency in state st = (sA,sB) as
vt = max{sA,sB}−1, the normalized number of unassigned apartments. A mecha-
nism is evaluated by the average inefficiency it creates:

V (µ) = lim
T→∞

sup
1
T
Eµ

[
T

∑
t=1

αmt(µ)+(1−α)vt(µ)

]
. (1)

Definition 2. A mechanism µ∗ is optimal if it minimizes average inefficiency,

V (µ∗) = infµ V (µ).

In Section IV.C, we show that in the limit as T → ∞, every mechanism gen-
erates at least one steady state. Furthermore, even when an optimal mechanism
generates multiple steady states, those steady states feature equivalent values of
U . This allows us to simplify Equation 1. Let m(µ) and v(µ) refer to allocation
and unassignment inefficiency in some steady state of µ . Then, the government’s
problem can be rewritten as:

min
µ

αm(µ)+(1−α)v(µ).
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III.A Model Discussion

Here we detail the rationale behind several important modelling decisions.
Random Uniform Lottery: We restrict the government to mechanisms that

cannot offer priority. In particular, the government cannot utilize a first-in-first-out
mechanism under this assumption. Indeed, in the setting presented in this model,
were the government permitted to choose an arbitrary mechanism, a first-in-first-
out mechanism would always achieve the first-best outcome under any parameter
region.18

As previously mentioned, the RFS system previously utilized a first-in-first-
out style mechanism which led to a surplus stock during the Asian financial crisis,
draining the HDB’s wealth through maintenance and holding expenses. Addition-
ally, abstracted from our model is an additional government concern: family for-
mation. At 1.14 children per woman in 2018, Singapore has one of the lowest
reproductive rates in the world. The Singaporean government has publicly stated
that increasing their reproductive rate is one of their major objectives. In order to
achieve this objective, the government gives married couples with children an extra
draw from the housing lottery. If a first-in-first-out mechanism were utilized, the
benefit to family formation would disappear as soon as a period had passed and
the household was placed in the queue. By contrast, through running the weighted
lottery every period, the incentive to form a family persists. This motivates our
decision to focus on the specific mechanism utilized in Singapore. Even when the
allocation method is constrained, welfare is substantially higher under endogenous
supply relative to exogenous supply.

Private Information: The model implicitly assumes that the government can-
not elicit household preferences through means outside the allocation mechanism.
Indeed, the Singaporean government was motivated to primarily use household ap-
plications to estimate demand. The following quotation is from the HDB web-
site in response to a Parliamentary Question regarding the possibility of directly

18Consider the following mechanism. Let every incoming household be allocated to a single wait-
ing queue, independent of their type. In every period t ̸= 0, the government builds an apartment to
match the type of the household at the beginning of the queue. Then, every household is incentivized
to report truthfully, since their report does not change their expected waiting time.
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surveying household preferences. “[The Singapore Ministry of National Develop-
ment] and HDB have considered the Member’s suggestion to introduce a register
for [BTO] flat applicants. However, there is no assurance that doing so will im-
prove the planning of BTO launches to meet demand since an indication of interest
may not accurately reflect actual demand, as there is no commitment to buy” (Mah
2010).19

Linear Waiting Costs: We assume waiting costs are linear (as in related work
on dynamic matching, e.g., Leshno [2022], Baccara, Lee, and Yariv [2020], Ashlagi
et al. [2018]). The first reason is normative: exponential waiting costs would imply
that an incoming household would be a higher priority for the mechanism designer
than a household that has failed to match multiple times. Linear waiting costs take
an agnostic stance on this front. The second reason is practical: if waiting costs
were exponential, the state space would grow rapidly. Not only would the number
of households of each type need to be tracked, but so would their time of arrival.

IV Results

IV.A Perfect Information Benchmark

To begin, we analyze the benchmark case where household types are common
knowledge and the government can choose the queue a household enters. Formally,
rather than households choosing a queue, dt , the government learns household types
θt and also selects dt(θt).

The government can easily ensure that allocative inefficiency is zero. In order
to do so, the government allocates households to queues of their types. That is, to
avoid allocating an apartment to a household with a different type, the government
sets dt(θt) = θt .

19In particular, the government cannot use a Becker–DeGroot–Marschak (BDM) style mechanism
to encourage households to report truthfully (Becker, DeGroot, and Marschak 1964). We draw on
recent literature that has shown that BDM mechanisms may not accurately capture willingness to
pay. For instance, Lehmann (2015) and Müller and Voigt (2010) show that BDM mechanisms may
produce biased estimates of willingness to pay (WTP). Relatedly, Cason and Plott (2014) show
that BDM mechanisms can confuse subjects due to their complexity, resulting in noisy or biased
estimates of WTP.

15



Consider state (1,0). If the incoming household is of type-A, it will be allocated
to queue A. Had the government built an apartment of type-B, a vacancy would re-
sult. As such, to avoid the possibility of a vacancy, the government must build a
type-A apartment to fill the non-empty queue. Hence, ΦA(1,0) = 1. For similar
reasons, ΦA(0,1) = 0. Under this strategy, the only possible states on the equilib-
rium path are (1,0) and (0,1). Therefore, defining ΦA(1,0),ΦA(0,1), and dt(θt)

defines a mechanism that we will refer to as the “first-best” mechanism, µ f b. This
mechanism can be depicted by the finite state automaton in Figure 2.

(1,0) (0,1)
θ = B

θ = A θ = B

θ = A

Figure 2: Finite-state automaton depicting the first-best mechanism, µ f b.
Notes: In the first-best mechanism, the government always builds an apartment matching
the type of the non-empty queue. Circles indicate states, while arrows depict transitions
given an incoming household of type θ .

Lemma 1 (First-Best). When the government knows θt and can select dt(θt), µ f b

generates 0 inefficiency.

It is worth noting that the government perfectly responds to demand when infor-
mation is public. If the previous household is of type θ , then a type-θ apartment is
built. Additionally, complete information implies the absence of vacancies in an op-
timal mechanism. We will later show that vacancies occur with positive probability
when the government prioritizes minimizing allocation inefficiency in an optimal
mechanism. Vacancies are present in non-mature neighborhoods in the real world,
implying that the government lacks the ability to perfectly predict household pref-
erences and that the government prioritizes reducing allocation inefficiency over
minimizing vacancies.
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IV.B Implementing the First-Best

For the remainder of this paper, we assume household types are not public infor-
mation. To begin, we prove a simple lemma that restricts the state space. A type-A
household prefers queue A if and only if the expected wait from entering queue A is
no greater than the expected wait of queue B plus the benefit-cost ratio, h−l

c . To see
why, suppose the state is s = (sA,sB) and sA > 0. Then, a simple calculation shows
that the type-A household prefers to enter queue A if the following holds:

u(dt = A,θt = A,s)≥ u(dt = B,θt = A,s),

=⇒ h− l
c

≥
(

Φ
A(s)

sA

sA +1
+1−Φ

A(s)
)
(1+wA(st+1))−

(
Φ

A(s)
)
(1+wB(st+1)).

Observe that the right-hand side is simply the difference in the expected wait
times for both queues. Similar computations can be done when sB > 0 or for a
type-B household considering queues B and A respectively.

Lemma 2. A type-θ household prefers to apply sincerely if and only if h−l
c ≥

Wθ (s)−Wθ ′(s).

The proof of Lemma 2 and all future proofs are relegated to the appendix. The
left-hand side of the constraint compares the benefit from sincere matching to the
cost of waiting. As households care more about matching to an apartment of their
type, they are more willing to accept increases in wait times. Similarly, as the cost
of waiting increases, their focus shifts, placing a lower weight on sincerely applying
and a higher weight on receiving an apartment immediately. To simplify notation,
let γ ≡ h−l

c represent the benefit-cost ratio: the ratio of the benefit from sincerely
applying to the loss from waiting an additional period.

Now we return to the government’s problem under private information, and ask
if the first-best can be implemented. The first-best mechanism, µ f b, is still the only
one that can achieve zero inefficiency. Lemma 2 lets us determine if households are
willing to select dt = θt in all states by computing the difference in expected wait
times for each state and comparing to γ .

We only need to check the incentives for a type-B household in state (1,0). The
symmetry of the mechanism implies that the incentives are the same for a type-
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A household in state (0,1). A simple calculation shows that the wait times from
queue A and queue B under the first-best mechanism are 2

3 and 4
3 respectively in

state (1,0). Then, households are willing to apply sincerely only if 4
3 −

2
3 ≤ γ:

Proposition 1 (First-Best Implementation). A mechanism can achieve m = v = 0 if

and only if γ ≥ 2
3 .

For any value of α and γ ≥ 2
3 , there is a single optimal mechanism. In state

(1,0), the government always builds an apartment of type A. Similarly, in state
(0,1), the government always builds an apartment of type B. Incoming households
always apply sincerely. An outside observer would see the government responding
in a manner commensurate to demand. This response is slightly lagged; supply
adjusts after the demand shock is realized. Since households are more concerned
about correct matching than wait times, the government can maximize efficiency
through building apartments that are currently highly demanded.

IV.C When the First-Best Cannot be Implemented

We proceed by assuming that households are unwilling to apply sincerely under
µ f b. We show the existence and uniqueness of steady states under any mechanism,
then characterize optimal mechanisms fixing the benefit-cost ratio γ .

Assumption 1 (First-Best Cannot be Implemented). γ < 2
3 .

Now, households weigh the cost of waiting more highly relative to the utility
gain from matching to the most desirable apartment type. Importantly, Assumption
1 sharply restricts household behavior in state (2,−1), implying that all households
prefer to enter queue B. To see why, consider the expected wait times for each
queue under any mechanism. The maximum wait for a household that enters queue
B is 0, because a type-B apartment is available. In contrast, the minimum wait for
a household that enters queue A is 2

3 +
2
3 ·

1
2 = 1, which arises when the government

always builds type-A apartments and all incoming households apply to queue B.
Combined with Lemma 2, a type-A household prefers to apply sincerely only if
γ ≥ 1, which violates Assumption 1. Therefore, in state (2,−1), all households
will enter queue B. This statement also holds for any state with more than two
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households in queue A. The expected wait from queue A in such a state is strictly
larger than in state (2,−1), while the expected wait from queue B remains 0.

Lemma 3 (Sincere or Responsive). Suppose Assumption 1 holds. If max{sA,sB}>
1, in state (sA,sB), either type-A or type-B households do not apply sincerely.

The intuition from the above result is: in extreme states, i.e., when one queue
is long and the other has a vacant apartment, all entering households prefer to take
the available house. Therefore, the system experiences negative feedback and tends
towards states in which demand is less imbalanced. It follows that the state space
of any mechanism’s steady state is finite. In particular, any optimal mechanism
generates a steady state with a finite state space. Furthermore, since it cannot be
optimal to remain permanently in state (2,−1) or state (−1,2),20 the steady-state
must be recurrent unless it never transitions between (1,0) or (0,1). Any mecha-
nisms that fail to transition between (1,0) and (0,1) has equal inefficiency. Then,
the finiteness of the steady-state combined with the recurrence of the state space
implies there is a unique steady state.

Before stating the result, we define queue symmetry. Informally, two steady
states are queue symmetric if they are equivalent up to relabelling queue A as queue
B, and vice versa. Formally, a steady state, S, is queue symmetric if there exists a
permutation π : Θ → Θ such that the probabilities of any two states, s,s′ ∈ S, are
equal under the permutation π(s) = s′. The proof of Lemma 4 shows that any opti-
mal mechanism generates at least one steady state, and furthermore, that outcomes
are effectively unique under optimal mechanisms.

Lemma 4 (Existence and Uniqueness).

1. If µ is an optimal mechanism, then there exists at least one steady-state as-

sociated with µ .

2. If an optimal mechanism µ generates multiple steady states, those steady

states are queue symmetric.
20Such a mechanism would be dominated by a mechanism that always remains in state (1,0).
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Lemma 4 implies that the average level of inefficiency is well defined. Either the
steady state is unique, or the two possible steady states feature equivalent levels of
inefficiency. As such, we will proceed by evaluating mechanisms using the average
level of inefficiency in any steady state.

Importantly, when Assumption 1 holds, behavior in state (1,0) is tightly regu-
lated. Suppose the government attempted to avoid vacancies through always build-
ing an apartment of type A, i.e., ΦA(1,0)= 1. Then, incoming households optimally
respond by entering queue A irrespective of their type. Since in every period one
type-A apartment is built and one household enters queue A, the state remains in
(1,0) indefinitely. We will refer to the described mechanism as the pooling mecha-

nism, µp.21 Under the pooling mechanism, ΦA(s) = 1 and dt = A.

(1,0)

θ = A,B

Figure 3: Finite state automaton depicting the pooling mechanism.
Notes: In the pooling mechanism, everyone joins queue A and the government only builds
type-A apartments.

Since half of the entering households are of type A, the level of allocation inef-
ficiency is 1

2 and the level of vacancy inefficiency is 0.

Remark 1. Under µp, allocation inefficiency is 1
2 and vacancy inefficiency is 0.

By Assumption 1, any mechanism that always builds an apartment of the type
matching the non-empty queue causes all households to prefer said non-empty
queue. Then, the state will never change, because every period a new household
and apartment enter the same queue. To prevent this behavior, the government must
build the less desirable apartment with positive probability. This insight cautions
against endogenous supply policy that responds myopically to demand: households

21There are technically several mechanisms that result in similar allocations and equivalent levels
of efficiency. For the sake of exposition, we will focus on the pooling mechanism described in the
main text.
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are incentivized to not apply sincerely. Furthermore, a naïve imputation of demand
through observing queuing decisions, without a deeper understanding of the deci-
sion problem faced by the applicant, overstates how satisfied households are with
the current policy regime.22

We proceed by searching for the optimal mechanism with allocation efficiency
below 1

2 . In order to improve allocation, we must have ΦA(1,0) ̸= 1. In particular,
ΦA(1,0) must be low enough to incentivize type-B households to apply sincerely. In
state (2,−1), the government always builds type-A apartments to minimize vacancy
inefficiency, since it cannot incentivize households to apply sincerely.

Consider the following mechanism. In state (1,0), the government builds a
type-B apartment with probability q. In state (2,−1), the government always builds
a type-A apartment. There are never more households in queue A than in state
(2,−1), since households always enter queue B when s = (2,−1) according to
Lemma 3. Similarly, ΦA(0,1) = q and ΦA(−1,2) = 0. We refer to this mechanism
as the two-state mechanism with parameter q. Formally, the two-state mechanism

with parameter q, µq, sets ΦA(1,0) = 1−q and ΦA(2,−1) = 1.23

Proposition 2 (Optimal Mechanism). Under Assumption 1, either the pooling

mechanism is optimal, or there exists q∗ such that µq∗ is optimal.

In order to determine the value of q∗, we compute all possible on-path wait
times. Let q denote the probability with which the government builds a type-B
apartment in state (1,0). Raising q increases wA(1,0), the expected wait time for a
household in queue A in state (1,0). In return, raising q increases the incentive for
an incoming type-B household to apply sincerely.

Given q, we can compute the queue-specific wait times for incoming house-
holds in state (1,0). Solving yields wA(1,0) =

4q+1
3−2q and wA(2,−1) = 2+q

3−2q . Lemma

22For instance, when estimating demand for BTO developments in our companion paper (Lee
et al. 2024), we model households as trading off higher chances of success against being closer
to amenities. This insight was corroborated by our conversations with applicants and government
officials.

23As an aside, we note that a mechanism could potentially sometimes build a type-B apartment
when the state is (2,−1). It turns out that the optimal mechanism never does so. In the appendix,
we formally show that building “the wrong apartment” in extreme states never increases the extent
to which households apply sincerely.
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(2,−1) (1,0) (0,1) (−1,2)

1
(1−q)

2

1
2

q
2

1
2

1−q
2

q
2

1

Figure 4: Finite state automaton depicting the two-state mechanism, µq.
Notes: Under the two-state mechanism, in extreme states, the government builds an apart-
ment of the type of the long queue. In states (0,1) and (1,0), the government builds an
apartment “of the wrong type” with probability q, for some optimally chosen probability q.
Arrows denote transition probabilities.

2 places a bound on the difference in wait times, if the bound is exceeded, house-
holds will not apply sincerely. In order to minimize the probability of entering state
(2,−1), q∗(γ) is implicitly defined as the solution to:

γ =
1−q

2
(1+wA(1,0))−q(1+wA(2,−1)). (2)

The right-hand side of Equation 2 is the difference in expected wait times. Inputting
the values of wA(1,0) and wA(2,−1) yields:

q∗(γ) =
3γ −2

2(γ −3)
.

In the remainder of this paper, when we refer to µq without specifying q, it is
understood that q is optimally chosen, i.e., q = q∗(γ).

When a type-B household is indifferent between entering queue A and queue B,
a type-A household in state (1,0) will strictly prefer to enter queue A. This result
immediately follows from Lemma 2, since the difference in wait times between
queues A and B is simply −1 times the difference in wait times between queues B

to A, and therefore is less than 0. By the symmetry of the mechanism, households
also apply sincerely in state (0,1).

Given the symmetry of the optimal mechanism, when discussing inefficiencies,
all that matters to us is the number of households in the long queue. Accordingly,
we write “(sA,sB)” with sA > 0, for both states (sA,sB) and (sB,sA). We proceed by
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computing the steady state probabilities up to queue symmetric steady states. In the
steady state, the transition probabilities at the beginning of a period are given by:

Origin
Destination

(1,0) (2,−1)

(1,0) 1− q∗
2

q∗
2

(2,−1) 1 0

We use Pq to denote the steady state measure of µq. That is, Pq(s) denotes the
“amount of time” the steady state spends in state s. Let M(q) denote the transition
matrix generated by µq, then Pq = PqM(q). Inverting and solving for Pq yields
Pq(1,0) = 2

2+q∗ and Pq(2,−1) = q∗
2+q∗ .

The level of inefficiency in the steady state is directly proportional to Pq(2,−1).
In state (2,−1) there is a 1

2 probability that the new household is of type A, while all
households enter queue B. State (2,−1) is the only source of allocation inefficiency
in equilibrium, in state (1,0) households always apply sincerely. Then, the average
level of allocative inefficiency is proportional to the fraction of time that the steady
state is in state (2,−1), and equals q∗

2(2+q∗) . Similarly, the level of unassignment is
equal to the proportion of time that the steady state is in state (2,−1), contributing
another q∗

2+q∗ in inefficiency.
In principle, the choice of q need not exactly render type-B households indiffer-

ent in state (1,0); larger values of q can also convince households to apply sincerely.
The upper limit for q is the point at which type-A households in state (1,0) prefer
to enter queue B. This constraint is given by a condition relating the benefit-cost
ratio γ to q:

γ ≥ q(1+wA(2,−1))− 1−q
2

(1+wA(1,0)). (3)

Solving Equation 3 with equality for q implies that q = 3γ+2
2(γ+3) . Then, the

range of values for q that ensures that households apply sincerely in state (1,0)
is q ∈

[
3γ−2

2(γ−3) ,
3γ+2

2(γ+3)

]
. We utilize the previously calculated values of inefficiency

by taking the derivative of inefficiencies with respect to q. Unsurprisingly, both
derivatives are positive: increasing q increases inefficiency. Since inefficiency is
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increasing in q, and thus minimized by q∗, we continue to focus on the two-state
mechanism with parameter q∗.

The above logic implies that there exist two possibly optimal mechanisms, the
pooling mechanism and the two-state mechanism. We determine which of the two is
optimal, conditional on α , the social planner’s preference parameter over allocation
inefficiency versus unassignment inefficiency.

Theorem 1 (Characterization). Let Assumption 1 hold.

For α < 2−3γ

8−5γ
, µp is the optimal mechanism. For α > 2−3γ

8−5γ
, the optimal mecha-

nism is µq. Finally, if α = 2−3γ

8−5γ
, µp and µq are both the only optimal mechanisms.

Theorem 1 shows that either µp or µq must be optimal. We consider the impact
of an increase in selectivity of households, γ . Formally, we show that µq improves
in efficiency in response to a decrease in the ratio of wait cost to relative gain from
applying sincerely.

As expected, the threshold at which µq is optimal decreases when the relative
gain from applying sincerely increases. The intuition for this comparative static is
simple. As the relative gain from the correct match increases, households become
more willing to apply sincerely, improving the ability of the government to match
households properly. Since µq takes advantage of sincere applications while the
pooling mechanism does not, the inefficiency of µq is decreasing in γ .

For a direct welfare comparison, suppose the government were utilitarian and
aimed to maximize the utility of households. The government would then place a
weight of h− l on allocation inefficiency and a weight of c on unassignment inef-
ficiency. Without loss of generality, and to be consistent with the previous results,
we normalize the government’s objective by dividing the weights by h− l + c.

Corollary 1 (Utilitarian Mechanism). Let Assumption 1 hold, and α = h−l
h−l+c . That

is, the government aims to minimize h−l
h−l+cm+ c

h−l+cv. Then, the pooling mecha-

nism is optimal when γ < 9−
√

65
4 . Otherwise, µq is optimal.

Corollary 1 shows that the qualitative implications of Theorem 1 hold for a
government which aims to maximize its households’ welfare. When γ is small
and households care more about wait times than applying sincerely, mechanisms
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that ignore preferences are optimal. When γ is large and households care about
allocation, mechanisms involving sincere applications do better.

In the context of public housing, Corollary 1 enables a simple comparison of
“take-it-or-leave-it” mechanisms and the BTO mechanism. Referencing Arnosti
and Shi (2019), there exist welfare parameters for which “take-it-or-leave-it” mech-
anisms may be optimal. Indeed, more intricate mechanisms feature losses that may
not be immediately apparent. Both “take-it-or-leave-it” mechanisms and endoge-
nous supply can be optimal in different parameter regions. Crucially, the social
planner’s objective and the preferences of the recipients need to be considered be-
fore determining the appropriate mechanism. For instance, in the US, public hous-
ing is primarily used to prevent homelessness. In our model, homelessness would
correspond to a large value for c, the cost of being homeless for an additional pe-
riod. In contrast, in Singapore, the alternative to receiving an apartment is generally
renting or living with family for an additional period. Then, our model suggests that
the differences in housing policy between the US and Singapore could be optimal,
in contrast to the findings of previous work. Changing the design of US public
housing policy to incorporate household preferences may leave more apartments
vacant, increasing waste.

IV.D Exogenous Supply Benchmark

In this section, we expand on the importance of endogenous supply. To do so,
we illustrate what happens when the supply is exogenous: we assume the govern-
ment cannot choose the type of the incoming apartment. We restrict the govern-
ment’s choice to ΦA(s) = 1

2 , equivalent to what Leshno (2022) called a “balanced”
setting. The proportion of incoming households and apartments of each type are
equal, implying that in the long run, perfect allocation efficiency is still feasible.

The first household will always wish to apply sincerely in equilibrium since
both queues have the same wait times. The strategy of subsequent households will
depend upon the current state. When queue B has no households, i.e., the state is
(sA,sB), for sA > 0, the wait time in queue A is strictly greater than that of queue
B. Therefore, incoming type-B households always strictly prefer to apply sincerely.
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The choice of a type-A household will depend upon the difference in expected wait
times. Importantly, the wait time for queue A is increasing in the number of house-
holds in queue A, because supply is exogenous. A strategy is a threshold strategy
if, for some threshold κ , it dictates that a type-θ household, in state (sθ ,sθ ′), enter
queue θ if and only if sθ < κ . In the appendix, we show that strategy profiles in
equilibrium are equivalent to threshold strategies.

When all households use the same threshold κ , we denote the expected wait
time at the start of the period in state s for a household in queue φ by wκ

φ
(s). In

equilibrium, κ must be large enough to ensure that incoming households no longer
wish to apply sincerely when the state reaches (κ,−(κ − 1)). When κ > 1, in
equilibrium, two constraints must hold. When there are κ households in either
queue, incoming households must prefer the empty queue. Second, when there
are κ − 1 households in either queue, incoming households must prefer to apply
sincerely. Lemma 2 then implies the following inequalities that relate the threshold
κ to the benefit-cost ratio γ:

γ ≤ κ

2(κ +1)

[
1+wκ

A(κ,−(κ −1))
]
+

1+wκ
A(κ +1,−κ)

2
,

γ ≥ κ −1
2κ

[
1+wκ

A(κ −1,−(κ −2))
]
+

1+wκ
A(κ,−(κ −1))

2
.

The wait times wκ
A(s) can be computed as the solution to a linear system of

κ + 1 equations.24 We focus on the case κ = 2 to illustrate a point of comparison
with the first-best mechanism. To begin, we compute the solution to the system of
equations. This yields wait times of w2

A(2,−1) = 5
2 , w2

A(1,0) = 2, and w2
A(3,−2) =

10
3 . Substituting these values into the above equations implies the following:

Lemma 5 (Minimal Exogenous Equilibrium). If γ ∈ [5
2 ,

10
3 ] and supply is exoge-

nous, the strategy profile where all households use a threshold of 2 is an equilib-

rium.

As the threshold κ rises, the lowest benefit-to-cost ratio γ that can be sustained
in equilibrium also rises. To see why, observe that as the number of households in a

24The full statement of the general system of equations is listed in the appendix.
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queue increases, each household expects to wait for a longer period of time in that
queue. Critically, when the state is (κ −1,−(κ −2)), the incentives of an incoming
type-A household determine the binding lower bound on γ .

Proposition 3 (Increased threshold for sincere applications requires a higher bene-
fit-cost ratio). As κ increases, the minimum γ under which the threshold κ strategy

profile is an equilibrium also increases.

We focus on κ = 2, the minimal threshold that generates a responsive equilib-
rium. Suppose κ = 1 was the threshold in some equilibrium. Then, in state (1,0),
households enter queue B, no matter their type. Such an equilibrium is not respon-
sive and is equivalent to allocating apartments independently of type.

For contrast, if the government had controlled the supply of apartments, the
first-best could have been implemented when γ > 2

3 . Furthermore, the level of allo-
cation inefficiency is higher for equilibria with κ ≥ 2 relative to the first-best imple-
mentation. We compute the level of allocation inefficiency under exogenous supply
when κ = 2. The resulting steady state25 has a frequency in states ((1,0),(2,−1))
of (2

3 ,
1
3) generating an inefficiency level of α

6 + 1−α

3 . This inefficiency is directly
increasing in the proportion of time spent in state (2,−1). State (2,−1) inher-
ently contains a vacancy and furthermore, households do not apply sincerely. By
comparison, when γ > 2

3 , there is 0 inefficiency when supply is endogenous. In
the appendix, we show that the optimal mechanism for exogenous supply found
in Leshno (2022) is outperformed by the constrained optimal mechanism with en-
dogenous supply.

This analysis suggests that the ability to control the supply of apartments is
incredibly important for the government. Even when only a single household is in
a queue, households are tempted to manipulate their reports.

V Competition and Market Thickness

Having characterized the constrained optimal government strategy, we proceed
by considering the impact of competition on gains from endogenous supply. To

25We treat symmetric states as one state, i.e., (1,0) and (0,1) are reduced to (1,0).
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begin this section and to fix ideas, we informally characterize our notions of com-
petition and thickness. A household considers a queue to be “competitive” if the
household believes there is a high probability another household will later enter
that queue. Competition implies that a household expects there are or will be sev-
eral other households in the same queue it is in. Thickness, while related, refers to
the number of households applying for queues simultaneously. Thickness implies
competition, but competition may not imply thickness.

We will show that the government can achieve an optimal allocation by batch-
ing several applications together in Theorem 2. To motivate this result, in Section
V.A, we first show that competition is undesirable when supply is exogenous. To
see why, note that competition reduces the probability of success in each period,
acting as a multiplier on expected wait times. In turn, competition also multiplies
the expected difference between the two queues’ wait times. Then, high levels of
competition and exogenous supply dissuade households from applying sincerely.
On the other hand, when supply is endogenous, competition gives the government
more flexibility to equalize expected wait times across queues, as we show in Sec-
tion V.B. Additional policy flexibility dominates the multiplicative effect of compe-
tition on wait times, thus improving efficiency in certain parameter regions (though
overall welfare still decreases). In particular, thickness is highly desirable for the
government. Finally, in Section V.C, we show that the government can artificially
generate thickness by batching several applications together. Furthermore, when
the government prioritizes sincere applications, i.e., α is large, it is optimal for the
government to batch.

V.A Persistence

We first consider the impact of persistent household types. Recall that in the
original model, household types were independently distributed with uniform prob-
ability. Here, we assume instead that θt+1 = θt with probability p≥ 1

2 . The period-0
household still has its type drawn with probability 1

2 from {A,B}.
We then find conditions under which the government can implement the natural

analog of the first best mechanism, µ f b. As in Section IV.A, households must prefer
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to apply sincerely, and the government must build apartments matching the queue
of the old household. Namely, d(θ ,s) = θ and ΦA(s) = 1s=(1,0). We emphasize
that the government’s hands are equally tied in the setting with persistent types and
the previous implementation of the first-best in Section IV.B. There is increased
competition, but the level of market thickness remains the same. In a given period,
the same number of households are present relative to before, but if a household ap-
plies sincerely, it expects an increased level of competition in the following period.
We show that persistence hinders the government’s ability to implement the first-
best outcome. To be exact, the parameter region where households always apply
sincerely in µ f b shrinks when p increases.

We proceed in a manner similar to that of Section IV.B. Computing the wait
times conditional upon entering a queue implies the difference in ex-ante expected
wait is 1+2p

2(2−p) . Lemma 2 then implies that the difference in expected wait times is
the lower bound on γ .

Proposition 4 (First-Best with Persistence). Under persistence p, there exists an

optimal mechanism with 0 inefficiency when:

1+2p
2(2− p)

≤ γ. (4)

We consider the welfare impact of increasing persistence. To do so, we take the
derivative of the difference in wait times with respect to p. The result is positive:
as the level of persistence increases, it becomes more difficult for the planner to
implement the first-best.

Lemma 6 (Increased Persistence Requires Increased γ). When demand is persis-

tent, the γ threshold under which there exists an optimal mechanism with 0 ineffi-

ciency is increasing in p.

Lemma 6 follows because households expect that future applicants are more
likely to compete for the same queue. A household’s incentive to not apply sincerely
increases in p. If a household applies sincerely, and is not matched in the current
period, the household expects a longer overall wait time relative to settings with
lower values of p. By not applying sincerely, households significantly decrease

29



their expected wait times, due to decreased future competition. Then, γ must be
higher to motivate households to apply sincerely under µ f b.

V.B Oversubscription

Going forward, we return to the no persistence case, p = 1
2 . We proceed by con-

sidering a natural form of competition, oversubscription. We call a housing market
oversubscribed when the number of households balloting is larger than the number
of apartments available. For reference, under the BTO scheme, apartments of all
sizes are oversubscribed, generally at a minimum of 2− 3×. In Section IV.C, we
focused on oversubscription at a rate of 2×. Larger rates of oversubscription fea-
ture an increase in the market thickness, while also directly increasing wait times.
In this section, we will show that the increase in thickness dominates, expanding the
region within which the government can implement the first best, thereby reducing
inefficiency.

To vary the level of oversubscription, we change the number of households that
arrive in period 0, without changing the supply of apartments. In every subsequent
period, one household appears as before. Let N denote the number of households
that arrive in period 0, i.e., the surplus of households. Households have the same
information as in previous sections. Household types are private, but households
observe the queues other households have entered. In particular, at t = 0, all house-
holds make their application simultaneously, and do so without information about
the other households that are present.

First, we change the number of households appearing at t = 0 from 1 to 2. We
then derive the optimal mechanism that implements the first-best. In state (2,0),
to avoid vacancies, the government must build a type-A apartment with probability
1. In state (1,1) the government builds a type-A apartment with probability 1

2 .
Without loss of generality, suppose this probability was less than 1

2 . Then, in state
(0,2) type-A households wish to apply sincerely only if type-B households wish to
apply sincerely in state (2,0). The probability of building a type-A apartment could
be increased, strictly improving type-A household’s willingness to apply sincerely.

When attempting to achieve the first best, there can be no vacancies. Hence,
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there are only three possible resulting states: (2,0),(1,1),(0,2). We treat the first
and last state symmetrically.

Solving for wait times under this mechanism, we find that wA(2,0) =
25
17 ,wA(1,1) = 27

17 . Using these values, we can then compute the incentive for new
arrivals to apply sincerely in all states. First, in state (1,1), the expected waiting
time is independent of the queue entered, and so households always prefer to apply
sincerely. Next, we ensure both types wish to apply sincerely when s = (2,0), in
order to do so, we compute the difference in expected waiting times conditional
on entering queue A as opposed to queue B. The expected wait time from entering
queue A is 2

3(1+wA(2,0)), while entering queue B gives a wait time of 1+wA(1,1).
Taking the difference and simplifying generates a value of 16

17 .
Then, a type-A household never has an incentive to manipulate in state (2,0)

since doing so entails increasing their expected waiting time. By comparison, type-
B households have a strong incentive to not apply sincerely. We do not consider the
incentive to apply sincerely in state (1,1), because the mechanism implies waiting
times are equal between queues. We show, in Lemma 12 in the appendix, that when
N = 2, the first-best can be implemented if and only if γ ≥ 16

17 .
In particular, comparing this value to the constraint when N = 1 implies that the

immediate effect of oversubscription was to decrease the ability of the government
to implement the first-best outcome. It is instructive to consider why this occurs.
While the level of competition is higher, the government’s hands are tied when it
comes to designing the mechanism. The allocation of households to queues is fixed
to avoid allocation inefficiency. In order to avoid unassignment, it must choose
ΦA(2,0) = 1 and ΦA(0,2) = 0 to avoid unused apartments. Last, in state (1,1) it
must choose ΦA(1,1) = 1

2 as any other value either unbalances the wait times from
entering queue A or queue B, and thereby fails to optimize. Then, N = 2 maintains
the pernicious effects of competition that were present in the persistence extension,
while not providing new tools to deal with the increase in wait times.

The Markovian assumption has some bite. The previous result arises because
we restrict consideration to mechanisms that only condition upon the current values
of payoff relevant variables. When the state is (1,1), both types of households are
more than willing to apply sincerely. Then, the apartment construction probabilities
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can be altered in order to incentivize households to apply sincerely in extreme states.
Since the binding constraint comes from a type-B household in state (2,0), we
increase the probability that the government builds a type-B apartment when the
current state is (1,1) and the previous state was (2,0). There also exists an upper
bound for these probabilities: when type-B apartments are built too often, new type-
A households will not apply sincerely.

Next, we consider the impact of further increasing N. We show that the nega-
tive impact of oversubscription on efficiency when there are two excess households
is an anomaly. A mechanism that implements the first-best in this setting cannot
allow vacancies, but also must incentivize households to apply sincerely. As such,
when the state is (N,0), the government must build a type-A apartment. However,
in any intermediate state (k,N − k), where households of both types are present,
the government can freely choose ΦA((k,N − k)). Of course, as discussed above,
when N = 2, the government has no additional flexibility in choosing ΦA(s). For
N > 2, increasing the level of oversubscription always improves the ability of the
government to implement the first-best. This is a direct result of the government’s
increased ability to equalize wait times between the two queues.

We proceed by solving for the optimal supply probabilities, as well as the asso-
ciated restrictions on γ . It is worth focusing on the shape of the optimal mechanism
under oversubscription. Thus, the optimal mechanism randomizes; it sometimes
builds an apartment in lower demand. In turn, the state is pushed towards a more
extreme level: sometimes the less demanded apartment is built, and the incoming
household wants the more demanded apartment. In order to achieve the first best,
the mechanism cannot build an apartment of the less-demanded type when there
are no households in the corresponding queue. This constraint limits the values
of γ under which the first-best can be implemented. A naïve solution would be to
default to building the apartment type that is in higher demand. However, doing
so strongly disincentivizes incoming households of the underdemanded type from
applying sincerely.

Except in this most extreme state s = (N,0), both apartment types are always
built with positive probability by the government. Figure 5 displays the optimal
mechanism for varying numbers of excess households. In general, the probability
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Figure 5: The probability that a type-A apartment is built under the optimal mech-
anism with over subscription.
Notes: The x-axis depicts the number of households in queue A minus the number in queue
B. The y-axis is the probability that the government builds a type-A apartment in the corre-
sponding state. States (0,N) and (N,0) are omitted, the corresponding y-values are 0 and
1 respectively.

that a less desired apartment is built is larger than the fraction of households in the
corresponding queue.26

Based on our previous analysis, two forces are at play. On the one hand, in-
creasing the level of competition exacerbates the loss from missing a match in the
current period, because waiting times increase across the board. On the other hand,
increasing oversubscription increases the number of free variables the government
can use in order to normalize wait times between reports. This outcome relates
to the thickness of the market, and how it better enables the government to match
households correctly.

To better distinguish between the higher loss from remaining unmatched and
the larger latitude to “balance out” wait times, we return to the previous baseline
where the government randomly builds either apartment type with probability 1

2 ,
ΦA(s) = 1

2 . Households freely choose the queue they wish to enter as before. Such a
mechanism can never achieve the first-best for any value of γ . There always exists a

26We solve explicitly for the optimal mechanism when N < 5, and numerically compute it when
N ≥ 5.
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Figure 6: Lower bound for the benefit-cost ratio γ under endogenous supply and
exogenous supply.
Notes: The x-axis displays the number of excess households (in the original model x = 1),
while the y-axis displays the lower bound on γ . Endogenous Supply Threshold refers to the
lower bound on γ under which the first-best can be implemented. Fixed Supply Threshold
refers to the lower bound on γ under which individuals are willing to apply sincerely while
no apartments are vacant.

sufficiently extreme state (k,N−k) such that type-A households prefer to not apply
sincerely for a large k. Instead, we find a weaker condition under which households
apply sincerely until there exists a vacant apartment. That is, households apply
sincerely except in state (N+1,−1), where all households enter the queue for type-
B apartments. We determine for which values of γ households are incentivized to
follow this strategy profile. Such a measure underestimates the direct effect of
competition while supply is exogenous, which further serves our point to show that
the government’s flexibility in choosing the apartment allocation is crucial.

Figure 6 displays the minimal values of γ as the level of competition increases
under this mechanism. Despite the increase in thickness generating an increase in
expected wait times, the added government control reduces the difference in wait
times. Therefore, when competition increases, the necessary value of γ also rises
under exogenous supply, while the opposite holds under endogenous supply.
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V.C Batching

One natural concern is that by directly increasing oversubscription, all house-
holds are made worse off due to increased levels of unassignment. Furthermore,
in practice, the government does not control household demand. Nonetheless, the
government can manipulate the timing of apartment applications. For instance, the
government could opt to have households apply quarterly or annually.27 Through
delaying the timing of applications, the government increases the level of unassign-
ment in the short run, as incoming households must wait until the next application
cycle to enter the market. We show that the corresponding increase in market thick-
ness improves the government’s ability to incentivize sincere applications.

We adjust the timing of the model to allow the government to choose the amount
of time that elapses between application cycles. At the beginning of the game, be-
fore t = 0, the government declares the length of application cycles, T . Households
that arrive during periods that are not a multiple of T , must wait for the period to
reach a multiple of T before entering a queue. While a household waits, the house-
hold’s type remains hidden, and the household continually pays the flow cost of
waiting each period while it remains unmatched. When the period is a multiple
of T , all households not in a queue simultaneously choose a queue to enter. At
the same time, except when t = 0, the government chooses the types of T different
apartments to be built. In effect, the government stockpiles its supply of apartments,
then builds all of them simultaneously when a cycle begins.

The government must still choose the apartment supply, ΦA(s), before ob-
serving agent reports. Since the government can now build T apartments si-
multaneously, we update our notation. Formally, the government’s strategy is
ΦA : S → ∆{A,B}T . That is, the government declares a probability distribution
over the types of T apartments. Then, the government’s objective is:

V (µ) = min
(ΦA(s),T )

αm(µ)+(1−α)v(µ),

27In Singapore, the government used to batch applications at the quarterly level. As of February
2024, applications cycles have been reduced in frequency to 3 times per year.
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where m and v are the values of allocation and unassignment inefficiency in
any steady state of µ as before. The government faces the same objective as be-
fore: to minimize the weighted sum of inefficiencies. In this section, unassignment
and vacancies are no longer equivalent: new households continue to arrive while
the government delays the building of apartments. Here, we focus on the original
definition of unassignment. Notably, unassignment penalizes high values of T , as
the minimal unassignment inefficiency for a given value of T is T−1

2 . In a sense,
batching procedures are overly penalized, implying that the government places a
greater weight on the welfare of its citizens relative to the cost of vacant apart-
ments. Nonetheless, we show that batching is still optimal when the government
cares deeply about the quality of matches.

We proceed by describing a mechanism with T = 2 and finding conditions under
which it is optimal. In the appendix, we consider the general setting and show
formally the following mechanism is optimal under these conditions. We will abuse
notation and refer to it as the T = 2 mechanism where appropriate.

Suppose the government aimed to ensure all households applied sincerely,
m = 0. In state (1,0), in order to properly incentivize households, the government
randomizes between building one apartment of each type or building two type-A
apartments. Let ΦA(1,0) = [(q,(1,1)),(1− q,(2,0))]. In state (2,−1), the gov-
ernment always builds two type-A apartments, ΦA(2,−1) = [(1,(2,0))]. We can
then compute expected wait times conditional upon the state. These in turn allow
the expected wait times conditional on reports to be computed. By Lemma 2 the
difference must be bounded by γ in order for households to apply sincerely.

In the appendix, we compute the difference in wait times with respect to q.
Then, we can solve for the optimal level of q that minimizes the difference in wait
times. We find the minimal difference is given by γ ≈ .294. Hence, the batching
mechanism with T = 2 induces sincere applications for γ ≥ .294. Notably, batching
attains a substantive improvement for the γ requirement under T = 1, namely γ > 2

3 .
Since the mechanism achieves zero allocation inefficiency, the only inefficiency

is unassignment, of which there are two sources. The two sources are the default
1
2 unassignment inefficiency from batching with T = 2 and the unassignment in-
efficiency in state (2,−1). State (2,−1) is only entered from state (1,0) when
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two type-A households arrive and with 1−q probability the government builds two
type-A apartments, or when two type-B households arrive and with q probability the
government builds one apartment of each type. Notably, since a household has 1

2

probability of being either type, this implies that in the steady state the probability
of state (2,−1) is independent of q. Then, so long as γ is high enough such that
households apply sincerely and q is accordingly chosen, the level of unassignment
inefficiency is independent of q.

As in the previous welfare analysis, we combine states that are symmetric in A
and B. The transition probabilities are given by:

(1,0) (2,−1)

(1,0) 3
4

1
4

(2,−1) 3
4

1
4

It is then immediate to observe that the expected time spent in state (2,−1) is
P(2,−1) = 1

4 . Therefore, the total level of unassignment inefficiency generated by
this mechanism is the sum of unassignment from T = 2 and state (2,−1), or 1

2 +
1
4 =

3
4 . We observe that any mechanism with T > 2 occurs a minimum unassignment
inefficiency of 1 and therefore is dominated by the optimal T = 2 mechanism when
γ > .294. It remains to determine if a dominating mechanism exists for T = 2. We
note that a superior mechanism also needs to overcome the pooling mechanism,
which generates 0 unassignment inefficiency but 1

2 allocation inefficiency.
A superior mechanism with T = 2 must generate a lower level of unassignment

inefficiency. At the same time, it must improve upon the allocation inefficiency gen-
erated by the pooling mechanism. In order to improve upon the inefficiency of the
pooling mechanism, households must not be matched uniformly. In the appendix,
we show that no mechanism can do both. The key tension is that mechanisms that
improve the level of unassignment inefficiency do so at the cost of increasing allo-
cation inefficiency. However, due to the inherent 1

2 unassignment inefficiency due
to setting T = 2, such mechanisms are dominated either by the previously defined
T = 2 batching mechanism or by the pooling mechanism for all α .

To complete the characterization, we show that for γ ∈ (.294, 2
3), the optimal

mechanism depends on α . When α is small, i.e., α ≈ .17, the pooling mechanism
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is optimal. As α increases, µq becomes optimal. Finally, when α is large, i.e.,
α ≈ .94, the batching mechanism is optimal.

Theorem 2 (Optimal Batching). When γ ∈ (.294, 2
3), the optimal mechanism for

α < 2−3γ

8−5γ
is the pooling mechanism. For α ∈

[
2−3γ

8−5γ
, 34−9γ

38−15γ

]
it is µq. Last, for

α > 34−9γ

38−15γ
the optimal mechanism is the T=2 batching mechanism.

The key implication of Theorem 2 is that batching is only a useful tool when al-
location is a greater concern than unassignment. If so, then despite a higher tempo-
rary level of unassignment, batching can drastically improve the quality of matches
by increasing the thickness of the market.

VI Discussion

Beyond the public-housing setting, our study holds broader implications for any
market where the mechanism designer controls the supply of goods available. In
economics, it is generally taken for granted that markets can achieve an “efficient”
solution.28 However, this notion of efficiency does not speak to other societal ob-
jectives, such as avoiding inequality or racial segregation. For instance, an envi-
ronment in which one “dictator” receives everything is considered efficient. If a
government wishes to address those additional objectives, it runs the risk of distort-
ing the market, worsening outcomes relative to if the government had done nothing.
In particular, when market forces cannot ensure demand is met by supply, the gov-
ernment struggles to accurately measure household preferences. Exemplified by
the Soviet command economy and the collapse of FTX, many attempts to create
centralized markets have failed.

Through the BTO program, the Singaporean government has treated concerns
regarding racial and socioeconomic inequality, while also incentivizing truthful re-
porting. These concerns have often failed to be addressed by private markets in
other cities. For instance, the Singaporean government wishes to ensure that ade-
quate housing is affordable for all families. In a city-state like Singapore, where

28For instance, the First Welfare Theorem states that in a competitive market with minor regularity
conditions, any equilibrium is Pareto efficient.
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land is a scarce commodity, leaving housing to market forces has historically failed
to ensure affordability. Indeed, in many large modern cities such as New York or
Hong Kong, housing costs have skyrocketed in recent decades. Price pressures on
housing exacerbate inequality. Those who seek jobs or amenities provided by the
city are often forced to commute long hours or settle for cramped living quarters.
While we abstract from these concerns in our model, they motivate government
intervention, possibly via centralizing the market for new public housing.

We developed a model of allocation with endogenous supply. The model pre-
dicts that extreme shifts in preferences are underestimated by simple counts of ap-
plications. For instance, if a given apartment type experiences a commonly known
surge in popularity, a portion of households will strategically apply for less desirable
housing to avoid extended wait times. The model shows that market thickness im-
proves the government’s ability to match households to apartments correctly. One
policy implication is that the government should delay the timing of housing devel-
opments to increase market thickness artificially.

We also provide a normative statement regarding the added benefit from endoge-
nous supply as opposed to exogenous supply. In many situations, the mechanism
designer has the ability to change the flow of incoming goods, potentially at cost.
This model suggests that the gains from doing so can be quite large. Indeed, these
gains are likely more than a naïve estimate of household preferences would suggest.
This result follows from households having incentives to manipulate when supply is
exogenous. Current mechanism design setups generally focus on allocating objects
that arrive exogenously. When supply can be adjusted—such as for housing, trans-
portation, and food—the conclusions for optimal design differ starkly from settings
where goods arrive randomly.
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A Appendix—Preference Intensity

In the main paper, we assumed that agents were one of two types, A or B. Both
types valued matched and mismatched apartments comparably (h, l), and shared
wait costs c; they only differed in the types of apartments that they preferred. We
now consider what happens if there are 2K types of agents. These types are given
by θi, where θ ∈ {A,B} and i ∈ {1,2, . . . ,K}. Each type’s utility is characterized
by three parameters: hi, li, and ci. Agents of type θ prefer that variety of apartment.
Without loss of generality, we order the types by increasing value of γi =

hi−li
ci

.29

We assume that in each period the incoming household’s type is drawn uniformly
across all possible types.

To begin, we observe an analogue of Lemma 2 for the generalized type space.
Agent i is only willing to apply sincerely if the increase in expected wait time is
below γi. The proof follows directly from the proof of Lemma 2.

Lemma 7. A type-θi household prefers to apply sincerely if and only if γi ≥Wθ (s)−
Wθ ′(s).

For the remainder of this section, we identify types with their respective values
of γi, justified by Lemma 7.

A.1 Strong and Weak Preferences

To begin, we let K = 2. First, suppose that γ1 ≥ 2/3, which implies that γ2 ≥
2/3. Then, all types are willing to apply sincerely under the first-best mechanism,
which must be optimal.

Next, suppose that γ1 < 2/3. As shown in the main body of the paper, the
first-best mechanism then fails to motivate households to apply sincerely. Consider
the two-state mechanism and choose q such that type-A1 households are willing to

29We also assume each type has a unique value of γi. If two types have the same θ and γi we treat
them as a single type.
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apply sincerely in state (1,0). This two-state mechanism automatically generates
an equilibrium. As shown in the main text, WA(1,0) >WB(1,0) for any value of q

consistent with the two-state mechanism. Therefore, there is no worry that type-A1

households will manipulate in state (1,0). Furthermore, in state (2,−1), Lemma 3
implies that all households will enter queue B.

It remains to be determined when the two-state mechanism is optimal. There are
two other mechanisms that require consideration. First, recall the pooling mecha-
nism, which has been previously considered; second, we introduce a “blended”
mechanism, in which q is chosen such that type-B2 households apply sincerely in
state (1,0) while type-B1 households manipulate. We will refer to this mechanism
as the mixed mechanism. Under the mixed mechanism, households still always en-
ter queue B in state (2,−1). However, only type B2 households enter queue B in
state (1,0), while households of types A2,A1, and B1 all enter queue A instead.

The level of inefficiency under the mixed mechanism can be computed as fol-
lows:

umm =
3(−5+ γ +

√
41−30γ + γ2)(1−α/2)

1+3γ +3
√

41−30γ + γ2
+

(4α)

1+3γ +3
√

41−30γ + γ2

We can then compare inefficiencies under the mixed mechanism to those under
the two-state mechanism. Notably, for α > 1/2 and any values of γ1 and γ2, the
mixed mechanism is strictly less efficient than the two-state mechanism. To see
why, observe that in the mixed mechanism, in every state there is a minimum of
1/4 matching inefficiency. To contrast, under the two-state mechanism, all house-
holds apply sincerely in state (1,0), and the probability of state (2,−1) can be kept
sufficiently low. Indeed, the maximum probability of (2,−1), comes when γ = 0,
and is still only 1/7.

However, as α decreases, the relative value of the mixed mechanism increases.
Indeed, when γ1 and γ2 are sufficiently far apart, the mixed mechanism benefits from
allowing type-B1 households to manipulate in state (1,0), decreasing the value of q

necessary to ensure the correct households apply sincerely.
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A.2 Continuum of Household Types

The results in the previous section generalize to when K = ∞, and there is a
continuous distribution G over each household’s realization of γi. Let G(x) indicate
the probability that a household’s value of γ is below x. We require that G(0) = 0.
Households can be divided into two groups: those who intend to apply sincerely in
state (1,0), and those who do not. These groups are characterized by a threshold
t: households with γi below the threshold manipulate, while those above apply
sincerely. Then, the mass of sincere applicants is 1−G(t). We denote this mixed
mechanism by µt

Theorem 3. For any distribution G, there exists tG ∈ [0,1] such that µtG is optimal.

Proof. To begin, the steady state probabilities are continuous functions of tG. In
turn, since both m and v are continuous functions of the steady state probabilities,
this implies that αm(µtG)+(1−α)v(µtG) is also a continuous function of tG. Then,
by the Weierstrass extreme value theorem, there exists tG such that the govern-
ment’s objective achieves a maximum on the compact set [0,1]. Last, by previous
arguments in Lemma 3, the state can never exceed (2,−1) or (−1,2) and further-
more, all households will manipulate in both of those states. Then, choosing t on
[0,1] exhausts the government’s strategy space, and so the previously found value
of tG must define an optimal mechanism.

In the previous setting, we characterized when the two-state mechanism and
the pooling mechanism were optimal. These previously optimal mechanisms admit
simple structures: the mixed mechanism with thresholds of G(0) and G(1) respec-
tively. When the threshold is G(0), households always apply sincerely in state
(1,0); when the threshold is G(1), households never apply sincerely.

B Proofs

Proof of Lemma 2. As noted in the text, in state s = (sA,sB), a type-A household
prefers to apply sincerely if and only if u(dt = A,θt = A,s) ≥ u(dt = B,θt = A,s).
Rearranging the utility function yields:
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u(dt = A,θt = A,s)≥ u(dt = B,θt = A,s)

h− cWA(s)≥ l − cWB(s)

h− l ≥ c[WA(s)−WB(s)] =⇒
h− l

c
≥WA(s)−WB(s).

An identical computation holds for type-B households. The claim follows.

Proof of Proposition 1. As shown in the text, the first-best mechanism is the only
mechanism that achieves 0 inefficiency. Under the first-best mechanism, the ex-
pected wait times for incoming households in state (1,0) are:

WB(1,0) =
∞

∑
i=0

(
1
2
· 1

2

)i

=
4
3
,

WA(1,0) =
∞

∑
i=0

1
2

(
1
4

)i

=
2
3
.

Because WB(1,0)>WA(1,0), type-A households will always be willing to apply
sincerely in state (1,0). Lemma 2 implies that type-B households will be willing
to apply sincerely if γ ≥ WB(1,0)−WA(1,0) = 2

3 . By design, the mechanism is
symmetric in states (1,0) and (0,1). Therefore, in state (0,1), type-B households
are always willing to apply sincerely, and type-A households are willing to apply
sincerely if γ ≥ 2

3 . The mechanism never leaves the set of states {(1,0),(0,1)},
which implies that no other constraints are relevant. Then, when γ ≥ 2

3 , the first-best
mechanism is implementable, and if γ < 2

3 , no mechanism achieves 0 inefficiency.

In the text, we focused on threshold strategies in equilibrium. Lemma 8 shows
that this approach was justified.
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Lemma 8. Any equilibrium generates an outcome equivalent to that generated by

some threshold strategy profile.

Proof of Lemma 8. Suppose not. Then, there exist two states s,s′, both of which oc-
cur with positive probability, such that sθ > s′

θ
, but type-θ households enter queue-

θ in state s and not state s′. However, Wθ (s) > Wθ (s′) implies that type-θ house-
holds must either strictly prefer to enter queue-θ in state s′ or the other queue in
state s. Therefore, in at least one of these states, households must have a profitable
deviation. Then, the original strategy profile cannot be an equilibrium.

Proof of Lemma 5. The wait time in a given state and queue depends on the proba-
bility of receiving an apartment immediately, as well as the transition probabilities.
As such, we can recursively define the wait times wm

A (k,−(k−1)), when 0 < k < m,
as the solution to the following system of equations using the transition matrix:

wm
A (k,−(k−1)) =

1
2

[
1
2
· k

k+1
(1+wm

A (k,−(k−1)))+
1
2
· k−1

k
(1+wm

A (k,−(k−1)))
]
+

1
2

[
1
2
(1+wm

A (k+1,−k))+
1
2
(1+wm

A (k,−(k−1)))
]
,

wm
A (m,−(m−1)) =

1
2

m−1
m

(1+wm
A (m−1,−(m−2)))+

1
2
(1+wm

A (m,−(m−1)))

=
2m−1

m
+

m−1
m

wm
A (m−1,−(m−2)).

Next, note wm
A (m+1,−m) only occurs when a household has deviated and en-

tered a queue that is already at capacity while the government simultaneously fails
to build a type-A apartment. Its value comes directly from the previous equations:

wm
A (m+1,−m) =

1
2

m
m+1

(1+wm
A (m,−(m−1)))+

1
2
(1+wm

A (m+1,−m)),

=
m

m+1
(1+wm

A (m,−(m−1)))+1.

When m = 2, this process generates the following system of equations:
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w2
A(2,−1) =

1
2
· 1

2
(1+w2

A(1,0))+
1
2
(1+w2

A(2,−1)),

w2
A(1,0) =

1
2

[
1
2
· 1

2
(1+w2

A(1,0))
]
+

1
2

[
1
2
(1+w2

A(2,−1))+
1
2
(1+w2

A(1,0))
]
.

The solution to the system of equations is given by w2
A(2,−1) = 5

2 and
w2

A(1,0) = 2. Given the previous two values, w2
A(3,−2) can be computed and is

equal to 10
3 . Since κ = 2 is an equilibrium only if both ICκ(κ) and ICκ(κ −1) are

satisfied, this implies the threshold equilibrium κ = 2 requires γ ∈ [5
2 ,

10
3 ].

Proof of Proposition 3. To begin, note that as the threshold κ increases, the average
wait time does as well. To see why, consider the exact difference between a thresh-
old κ strategy and a threshold κ +1 strategy. In particular, the different arises when
there are κ −1 households in a given queue and the incoming household is of that
type. Under the threshold κ −1 strategy, the incoming household enters the empty
queue and is immediately allotted an apartment. Under the threshold strategy, the
incoming household enters the full queue, further increasing all present households
wait times. Therefore, the ex-ante expected wait time is greater under a threshold
equilibrium in any state.

Then, consider the IC(κ) constraint. Since each wκ
A(s) > wκ−1

A (s) and wκ
A(s+

1) > wκ
A(s), it follows that both wκ

A(κ,−(κ − 1)) > wκ−1
A (κ − 1,−(κ − 2)) and

wκ
A(κ +1,−κ)> wκ−1

A (κ,−(κ −1)). Last, a direct comparison of ICκ(κ −1) and
ICκ−1(κ −2) then implies that the solution to the first must be larger than the solu-
tion to the section.

Proof of Lemma 4.

1. To begin, Lemma 3 implies that in state (2,−1) all incoming households
strictly prefer to enter queue B. Then, the state space is bounded by (2,−1)
and (−1,2), and a finite number of states are recurrent. Therefore, by stan-
dard results in dynamics, at least one steady state exists.

2. For the steady state to fail to be unique, there must be an absorbing state
separating either (2,−1) from (1,0) or (1,0) from (0,1). A mechanism that
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remains in (2,−1) indefinitely cannot be optimal, since such a mechanism
would have both allocation and unassignment inefficiency higher than the
pooling mechanism. On the other hand, a mechanism that fails to transition
between (1,0) and (0,1) implies uniqueness up to queue-symmetric steady
states, unless the mechanism has different steady states when beginning with
a type-A household as opposed to a type-B household. However, this state
non-uniqueness cannot be optimal due to the symmetry of the problem. Sup-
pose a mechanism generated two steady states that were not queue symmetric,
with differing levels of efficiency. Then, because both must involve equilib-
rium behavior of the part of the household, the government could simply use
a strategy equivalent to that of the steady state with lower inefficiency ev-
erywhere. Through doing so, household behavior must still be equilibrium
behavior, and inefficiency would have been lowered, proving that the original
mechanism was suboptimal.

Remark 2. When the government utilizes µq with q∗ an incoming type-A household

in state (1,0) does not have an incentive to deviate.

The following simple result will prove useful for the proof of Proposition 2.

Lemma 9. The maximal equilibrium allocation inefficiency is 1
2 .

Proof of Lemma 9. Let WA(s)−WB(s)< γ for some state s, then each type-A house-
hold strictly prefers to enter queue A. As such, allocation inefficiency in s is at most
1
2 since all type-A households apply sincerely. When WB(s)−WA(s) < γ a similar
argument holds for type-B households. Then, in any state, allocation inefficiency is
at most 1

2 . Last, since overall allocation inefficiency is a weighted average of the
allocation inefficiency in each state, the overall allocation inefficiency must be at
most 1

2 .

Proof of Proposition 2. Lemma 3 allows us to focus on mechanisms with state
spaces restricted to states (2,−1) through (−1,2). Since incoming households al-
ways enter the short queue in (2,−1) and (−1,2), the state can never exceed (2,−1)
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or (−1,2). In state (2,−1), allocation and unassignment inefficiencies are 1
2 and 1.

Note that both values are weakly larger than inefficiency in state (1,0) by Lemmas
3 and 9. It follows that the government aims to minimize the proportion of time
spend in states (2,−1) and (−1,2).

Importantly, if allocation inefficiency is lower than 1
2 , the difference in ex-

pected wait times in states (1,0) and (0,1) can be at most γ . That is, |WA(1,0)−
WB(1,0)| ≤ γ , otherwise type-A households or type-B households strictly prefer to
not apply sincerely.

We then optimize over all such possible mechanisms, and show that µq min-
imizes inefficiency. Firstly, note that if a type-B household in state (1,0) strictly
prefers to apply sincerely, ΦA(1,0) can be increased while ensuring type-B still has
incentive to continue applying sincerely. Furthermore, increasing ΦA(1,0) reduces
the probability that the mechanism enters state (2,−1). Then, the optimal mecha-
nism has γ =WB(1,0)−WA(1,0).

We proceed by considering a mechanism more general than µq. There are two
primary differences. First, the government sometimes builds the wrong apartment
in state (2,−1), that is ΦB(2,−1) is not necessarily 0. Second, type-B households
are incentivized to apply sincerely with probability below 1 in state (1,0). Let
xB(1,0) be the probability with which a type-B household enters queue A in state
(1,0).

The level of inefficiency generated by this mechanism is:

2(1+ xB(1,0))q−α(q+ xB(1,0)(−2+q+2ΦB(2,−1)))
2(2+q+ xB(1,0)q−2ΦB(2,−1))

.

Taking the derivative of the above equation with respect to ΦB(2,−1) yields:

−4xB(1,0)(1+ xB(1,0))(−2+α +αxB(1,0))(−3+ xB(1,0)+ γ(−1+ xB(1,0))(−1+ΦB(2,−1))+2ΦB(2,−1))
U2 +√

−4(2+ γ(−3+ xB(1,0)))xB(1,0)(−1+ΦB(2,−1))+(−3+ xB(1,0)+ γ(−1+ xB(1,0))(−1+ΦB(2,−1))+2ΦB(2,−1))2

U2 .

for some U which is constant with respect to ΦB(2,−1). The exact value of U

is irrelevant since U2 must be positive. The numerator is always negative: Note that
it can be rewritten as V +

√
4(2+ γ(xB(1,0)−3))xB(1,0)(1−ΦB(2,−1))+V 2,
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where V = 4xB(1,0)(1 + xB(1,0))(−2 + α + αxB(1,0))(−3 + xB(1,0) +

γ(−1 + xB(1,0))(−1 + ΦB(2,−1)) + 2ΦB(2,−1). However, γ ≤ 2
3 im-

plies that 4(2 + γ(xB(1,0) − 3))xB(1,0)(1 − ΦB(2,−1)) ≥ 0 and therefore√
4(2+ γ(xB(1,0)−3))xB(1,0)(1−ΦB(2,−1))+V 2 ≥−|V |. Then the derivative

of inefficiency with respect to ΦB(2,−1) is always positive, and it is optimal to
minimize ΦB(2,−1) by setting it equal to 0.

We then proceed by taking the derivative of inefficiency with respect to xB(1,0).
The derivative is:

8xB(1,0)(−3+ γ + xB(1,0)+4αxB(1,0)− γxB(1,0)
U2

+

√
4(2+ γ(−3+ xB(1,0)))xB(1,0)+(−3+ γ + xB(1,0)− γxB(1,0))2)

U2 ,

where again U is a constant we omit because U2 must be positive. Furthermore,
by a similar line of reasoning, this derivative is positive; therefore xB(1,0) should
be set to 0 in an optimal mechanism. We summarize these two findings in the
following Lemma.

Lemma 10. Under Assumption 1, if the pooling mechanism is not optimal, then the

optimal mechanism sets xB(1,0) = 0 and ΦB(2,−1) = 0.

Then, Lemma 10 implies that the last variable to consider is the value of q. As
shown above, q must be minimized subject to the constraint that type-B households
in state (1,0) apply sincerely. Therefore, µq is optimal anytime type-B households
in state (1,0) have incentive to apply sincerely. Then, given the previous computa-
tion of q∗, µq is optimal.

We proceed by determining the wait times for µq.

Wait time computations for two-state mechanism:

wA(1,0) =
1
2
·q[1+wA(1,0)]+

1
2
·q[1+wA(2,−1)]+

1−q
4

· [1+wA(1,0)],

wA(2,−1) =
1
2
[1+wA(1,0)].
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Solving yields wA(1,0) =
4q+1
3−2q and wA(2,−1) = 2+q

3−2q . Then, in order for house-
holds to apply sincerely, Lemma 2 implies the following constraints on γ:

γ ≥ (1−q)[1+wA(1,0)]− [q(1+wA(2,−1))+
1−q

2
(1+wA(1,0))],

γ ≥ 1−q
2

(1+wA(1,0))−q(1+wA(2,−1)).

Lemma 11. Under µq, the level of allocation inefficiency is 2−3γ

14(2−γ) and the level of

unassignment inefficiency is 2−3γ

7(2−γ) .

Proof of Lemma 11. Since µq only generates inefficiency in states (2,−1) and
(−1,2), the total inefficiency is directly proportional to the proportion of time spent
in those two states. Under the optimal mechanism, the proportion of time in states
(2,−1) and (−1,2) is 2−3γ

7(2−γ) . With 1
2 probability, a household fails to apply sin-

cerely, and there is always a vacant apartment in (2,−1) or (−1,2). Therefore, the
allocation and vacancy inefficiencies are given by 2−3γ

14(2−γ) and 2−3γ

7(2−γ) .

Proof of Theorem 1. Proposition 2 shows that either µq or µp is optimal. We pro-
ceed by comparing the inefficiencies generated. Lemma 11 directly provides the in-
dividual inefficiencies for µq. Summing them with weights from the government’s
objective implies that the total level of inefficiency is:

α

2
2−3γ

7(2− γ)
+(1−α)

2−3γ

7(2− γ)
=
(

1− α

2

) 2−3γ

7(2− γ)
.

The level of inefficiency under the pooling mechanism is α
1
2 ; there is no va-

cancy inefficiency and half of the households fail to apply sincerely. Comparing the
two and solving for α yields the threshold 2−3γ

8−5γ
.

Corollary 2. The threshold which dictates whether µp or µq is optimal, 2−3γ

8−5γ
, is

decreasing in γ .

Proof of Corollary 2. We take the derivative of the threshold in Theorem 1 with
respect to γ .
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∂
2−3γ

8−5γ

∂γ
=

−14
(8−5γ)2 < 0.

Proof of Corollary 1. A computation similar to the above implies that the govern-
ment prefers µq when 2(γ)2 −9γ +2 < 0 or when γ > 9−

√
65

4 ≈ .234.

Proof of Proposition 4. We begin by computing the difference in the expected wait
times under the implementation of the first-best mechanism.

WB(1,0) = 1+ p · 1
2
+(p · 1

2
)2 + . . .

=
1

1− p
2
,

WA(1,0) =
1
2
+

1
2

1− p
2

+
1
2

1− p
2

p
2
+ . . .

=
1
2

3−2p
2− p

,

WB(1,0)−WA(1,0) =
1+2p

2(2− p)
.

By Lemma 2 this is an equilibrium only if γ bounds the differences in expected
wait times.

Proof of Lemma 6. The derivative of equation 4 with respect to p is given by:

∂ [wB(1,0)−wA(1,0)]
∂ p

=
2(2(2− p))− (1+2p)2(−1)

4(2− p)2 ,

=
5

2(2− p)2 > 0.
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Since the derivative is positive, as p increases, so must γ to incentivize house-
holds to apply sincerely.

Lemma 12. When N = 2, the first-best can be implemented iff γ ≥ 16
17 .

Proof of Lemma 12. Wait times under the first-best mechanism, are given by the
solution to the following system of equations:

wA(2,0) =
1
2
· 2

3
(1+wA(2,0))+

1
2
· 1

2
(1+wA(1,1)),

wA(1,1) =
1
2

[
1
2
· 1

2
(1+wA(1,1))+

1
2
(1+wA(2,0))

]
+

1
2
· 1

2
(1+wA(1,1)).

The solution to the above system of equations is wA(2,0) = 25
17 ,wA(1,1) = 27

17 .
The remainder of the proof follows directly from the arguments in the body of the
paper.

Proof of Theorem 2. In order to show that the T = 2 batching mechanism is opti-
mal, we proceed in a similar manner to the proof of the optimality of the q∗ mech-
anism. As shown in the main body of the paper, whenever the T = 2 mechanism
encourages households to apply sincerely, the T = 2 mechanism dominates any
mechanism with T > 2. This follows from the fact that if T > 2, then unassignment
inefficiency is 1 at a minimum.

Since we have already characterized the optimal mechanisms with T = 1, we
proceed by proving the T = 2 mechanism is optimal among all mechanisms with
T = 2. Note that for reasons similar to that in the q∗ mechanism, it is never optimal
to build type-B apartments in state (2,−1). Formally, the problem is the following:

V (µ) = min
ΦA(1,0)∈∆{0,1}2

αm+(1−α)v(µ).

Standard optimization techniques imply that ΦA(1,0)[0,2] = 0. Last, we deter-
mine the optimal value for q under the T = 2 mechanism. We can compute expected
wait times for a household already in queue A as the solution to the following pair
of equations:
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wA(1,0) =
1
4

[
2q
3
(2+wA(2,−1))+(1−q)

1
3
(2+wA(1,0))

]
+

1
2
· q

2
(2+wA(1,0)),

wA(2,−1) =
1
4
· 1

2
(2+wA(2,−1))+

1
2
· 1

3
(2+wA(1,0)).

Algebra yields the following solutions with respect to q:

wA(1,0) =
42+196q
231−50q

,

wA(2,−1) =
162+4q

231−50q
.

Conditional on the state, the difference in wait times is:

wA(1,0)−wB(1,0) =
1
6
−1725+2357q+62q2

−231+50q

wA(2,−1)−wB(2,−1) =
453−142q

1386−300q

This batching mechanism minimizes the maximum of the two differences when
q = 3

124(−833+
√

753905), implying that households apply sincerely for γ above
−453+ 213

62 (−833+
√

753905)
6(−231+ 75

62 (−833+
√

753905))
≈ .294.

C Descriptive Analysis

In this section, we present several descriptive findings to show that, 1) the Singa-
porean government does take household demand into consideration when determin-
ing supply; and 2) the BTO mechanism matches households to apartments below
their top preference a significant fraction of the time.
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Figure 7: Percentage of apartments, per half year by type, built in non-mature
neighborhoods.
Notes: Non-mature neighborhoods have more land for further housing and infrastructure
development, relative to mature neighborhoods.

C.1 Responsive Apartment Supply

Under BTO, each booking made by a household is a signal of housing demand.
This allows the HDB to adjust future housing supply to meet expected demand.
In Figures 7 and 8 we compare non-mature and mature neighborhood apartment
allocations by type. The larger level of volatility in mature neighborhood apartment
supply reflects the government’s willingness to adjust the supply of housing when
it has access to demand data.

Figure 7 displays the relative quantities of housing types supplied in non-mature
neighborhoods. We observe that while the total quantity supplied fluctuates over
time, the relative proportions of each type do not. That is, in neighborhoods where
the government has less information, it opts to avoid adjusting the supply of hous-
ing.

In contrast, Figure 8 shows that housing in mature neighborhoods changes
sharply over time. While 3- and 5-room apartments initially are built at equal rates,
their relative ratios change dramatically. Comparing Figure 8 and Figure 7, there is
more variation in proportions of various types built over time in mature neighbor-
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Figure 8: Percentage of apartments, per half year by type, built in mature neigh-
borhoods.
Notes: Mature neighborhoods have more limited land for housing development but see
higher demand for housing.

hoods than in non-mature neighborhoods. In mature neighborhoods the government
has more information about prior demand realizations, while in non-mature neigh-
borhoods the government knows little beyond the overall population-level prefer-
ences. We believe that this difference is due to the government accounting for
neighborhood-level demand, and using it to determine future offerings within that
neighborhood. In the remainder of this section, we conduct a more detailed anal-
ysis using BTO data to show that the government takes household demand into
consideration.

C.2 Data

Our data are taken from the Housing and Development Board of Singapore
(HDB). The data set comprises applications to all BTO developments between 2012
and 2020. We refer to each period with applications and matching as a “cycle.”30

These data were constructed through liberal use of the Wayback Machine to scrape

30The number of cycles per year varies during this period: there are 6 cycles each year in 2012-
2014; 3 cycles in 2015 and 2020; and 4 cycles in the remaining 4 years, resulting in a total of 40
cycles.
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historical BTO results from the HDB website.31 We split the apartment data into
types based on the number of rooms, i.e., 3-, 4-, or 5- room apartments.32 The types
of apartments in the previous theoretical sections corresponds to the number of
rooms provided. We use “supply” to refer to the number of apartments of a certain
type available in a given period. Similarly, “demand” will refer to the number of
applications in a period for those apartments. We aggregate the data across mature
and non-mature neighborhoods.

C.3 Lagged Effects of Supply and Demand

To let the data speak to the model, we use proportional demand and supply.
Rather than using the total number of k-room apartments built, we calculate the
per-period proportion of k-room apartments built:

dd4t = β0 +dd4t−3β1 +dd4t−4β2 +
4

∑
l=1

ss4t−lγl +ut .

We regress proportional supply on proportional demand from 3-4 cycles ago
and lags of supply from 1-4 cycles ago. This specification is chosen because the
Public Housing Authority announces its developments approximately two cycles
before the cycle takes place, so it can only condition on the observed demand from
3-4 cycles before. From the results of the regression, displayed in Table I, the third
lag of demand is significant at the 5% level in predicting supply. The coefficient is
also positive, suggesting that when there is higher demand for 4-room apartments in
previous periods, the corresponding supply increases in subsequent periods. Lags
of supply are not significant when regressing demand on lags of demand and sup-
ply. Hence, demand likely does not depend on past supply. We have suggestive
evidence that the government takes previous household requests into consideration

31http://www.archive.org/
32Applicants apply to a (location, size) pair in every cycle. The majority of the population chooses

among 3-, 4-, and 5- room apartments. The HDB chooses the proportion of each type of apartments
(characterized by size) in each period, but which land parcels are available is under the purview of
the Urban Redevelopment Authority of Singapore.
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Table I: LAGGED DEMAND PREDICTS SUPPLY

Regressor Estimate Std. Error t-stat p-value

(Intercept) 0.495 0.192 2.581 0.015
Four room demand at t - 3: (ddt−3) 0.435 0.167 2.595 0.015
Four room demand at t - 4 :(ddt−4) 0.159 0.176 0.904 0.374

Four room supply at t - 1: (sst−1) 0.183 0.183 1.004 0.324
Four room supply at t - 2: (sst−2) 0.295 0.161 1.829 0.078
Four room supply at t - 3: (sst−3) -1.032 0.304 -3.395 0.002
Four room supply at t - 4: (sst−4) 0.010 0.336 0.029 0.977

Notes: Regression of proportional supply of 4-room apartments (ss4t) in period t on pro-
portional supply of 4-room apartments in period t −1 to t −4, and proportional demand of
4-room apartments in periods t −3 and t −4 (i.e., dd4t−3 and dd4t−4). There are T = 40
cycles.

when determining what types of new apartments to build, which justifies the mod-
elling focus on the government’s problem.

C.4 Estimating the Upper Bound on Sincere Applications

We only observe the total number of applicants in each queue. Hence, we can-
not observe “true” household preferences, or even track households at the individual
level to observe if their applications are changing over time. This limitation makes
it difficult to measure match inefficiency, as we do not know whether a match cor-
responds to a household receiving its top choice.

Nonetheless, we can estimate an upper bound on truth-telling with aggregate
data. We assume individual-level preferences do not change over time and no exit-
ing. Consider the number of households that apply for an apartment type in a given
period minus the number of households that actually receive that apartment. Call
this number the oversubscription (os) for that apartment type. In the next period,
the number of households applying to that apartment type (dd) should be at least as
high as the current period’s oversubscription. If it is not, this means that households
must have applied for different apartment types (i.e., they have switched). Then, in
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period t, the statistic ost−1−ddt is a lower bound on the number of period-t switch-

ers (lswt). If ost−1 < ddt , we take the conservative view that there are no switchers.
Hence,

lswt := max{0,ost−1 −ddt}.

Switching can occur at the individual level, but be indiscernible in the aggre-
gate. As such, lsw is a lower bound for the number of switchers. For instance, if one
household switches its application from 3-room apartments to 4-room apartments
and another switches its application from 4-room apartments to 3-room apartments,
aggregate applications would look identical for both periods. We would be un-
able to tell that two switches had occurred. The number of switchers is a lower
bound for the extent of misreporting. With persistence in household preferences,
switchers must have misreported their type at least once. Further, some households
may consistently misreport their type, and would not be captured by the switching
statistic. Hence, our lsw statistic is a conservative lower bound for the total extent
of misreporting in the system.

Figure 9 shows there are several instances where the demand in a given period
is below the oversubscription rate from the previous period, indicating the existence
of switchers.

With a lower bound on the extent of misreporting, we can approximate a lower
bound for mismatch in the economy. Due to the uniform allocation lottery, the
probability that any household receives an apartment in a given period for a given
type is simply P(matcht) = sst/ddt , where sst is the period t supply. Then, the
expected number of switchers that are matched to an apartment in period t is:

lmist := P(matcht)lswt .

Since lswt is a lower bound for the total number of people misreporting in period
t, the expected number of mismatches in period t must be at least as high as lmist .33

We then normalize lmist by dividing by the total supply of apartments of that type,

33Since people are matched to their reports, the number of people who misreport and are matched
is equal to the number of mismatches in a given period.
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Figure 9: Previous oversubscription against current demand, as well as current
apartment supply.
Notes: 4-room apartments are represented in the top figure, while 5-room apartments are
represented in the bottom figure. Solid lines indicate the difference between previous over-
subscription and current demand, ddt − ost−1. Dashed lines indicate the supply of apart-
ments.
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and use lmist/sst as our measure of mismatch. By taking the mean of lmist for
4-room and 5-room developments in our time period, we find that at least 6.4% of
4-room apartments and 10.2% of 5-room apartments are allocated to households
that would have preferred a different apartment under this measure. Given that
this measure underestimates actual levels of mismatch, the potential to improve
allocative efficiency may be large.

D Queue Hopping

Under the real BTO mechanism, households can freely switch queues between
application cycles. In this section, we show that allowing for queue switching does
not change the optimality of the mechanisms presented in the main body of the
paper. Under those mechanisms, no household wishes to change their queue at the
beginning of a period. We formally prove this result below.

To provide intuition for the results that follow, note that the incoming house-
hold in a given period always has more information than households currently in a
queue. In particular, if a household in a given queue is willing to change queues,
then all incoming households will strictly prefer to enter the queue that that house-
hold swapped to. Then, correct allocation is impossible when households switch,
resulting in high inefficiency in mechanisms that take advantage of swapping. This
insight is specific to stationary markets, wherein households continually arrive to
be matched. In a static market, where no new households arrive, swapping could
very well be part of an optimal mechanism.34

The timing is as follows. In every period when the incoming household would
enter a queue, all present households simultaneously also choose a queue to enter.
That is, households choose the queue they wish to enter without knowledge of the
queue other households are about to enter. We denote the period τ choice of the
household that arrived in period t by dτ

t .
In this setting, we need to define the state variables with care. Previously, once

34Consider a simple static setting with two households and one apartment of each type. If both
households initially apply to the same queue, the household that loses the resulting lottery would
prefer to switch queues.
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a household had entered a given queue, their actual type became irrelevant for both
the household and the government. Since they could not switch, incoming house-
holds only cared about their selected queue, and the government could no longer
influence that household’s match. However, now households can switch queues be-
tween periods, implying that tracking their type is important. Furthermore, house-
holds can carry beliefs regarding the types of other households. This observation
is important because a household’s type informs their switching probabilities. In
practice, this behavior seems unrealistic. While applicants might observe appli-
cation rates, they will not track applications household-by-household. Hence, we
make the following assumption of naïvete: households only observe the length of
each queue, not the types of other households or the history of household-level
applications.

Assumption 2. Households are Markovian —their strategies are a function of the

state.

It is trivial to show that whenever the first-best mechanism was implementable
in the original model (i.e., when γ ≥ 2

3 ) it remains optimal in the new setting. To see
why, recall that the first-best mechanism instructed households to report truthfully,
and always built an apartment matching the type of the household currently present.
Then, a household in the queue that matched their type would never wish to change
their queue. If they were to do so, that household could not receive an apartment this
period, and furthermore ensures the government will build the “wrong” apartment
next period. We then focus our attention on the case where the first-best is not
implementable; namely, when Assumption 1 holds.

The new incentive constraints implied by the ability to switch are never violated
by the pooling mechanism. Switching queues merely ensures that the household
cannot receive an apartment in the given period, and will not change the types of
apartments the government builds in the future.

We show that the natural translation of Section IV.B’s two-state mechanism
continues to be an equilibrium in household strategies. As before, µq is optimal
whenever the pooling mechanism or first-best mechanism are not optimal.

Proposition 5. Households never switch their queues under µq.
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Furthermore, if neither the pooling nor the first-best mechanisms are optimal,

then µq is optimal.

Proof. We first show formally that no household wishes to change its queue under
µq on the equilibrium path. We translate µq to the current setting by fixing the
government’s strategy and incoming household’s strategies. Old households reenter
their queue in every period. Notably, in state (2,−1) incoming households report
type B independently of their type. In addition, we require that households do
not swap the queue they have entered in later periods. This generates two new
constraints, one for each possible state.

In state (1,0), it is easy to see that the type-A household does not wish to switch
queues. The probability with which an apartment of type B is built, q, was selected
to render incoming type-B households indifferent between the two queues. Relative
to incoming type-B households, current type-A households expect less competition
in queue A and prefer to match correctly. Then, if an incoming type-B household is
indifferent, current type-A households strictly prefer to remain in queue A.

Similarly, in state (2,−1) current type-A households expect the same wait time
independent of the queue they select. All incoming households select queue B and
the government always builds a type-A apartment. By remaining in queue A, they
compete with one other household for one apartment: the other household from the
previous period. By switching to queue B, they compete with one other household
for one apartment as well: in this case, the incoming household. Furthermore, in
the event the household does not receive an apartment in the current period, they
prefer state (1,0) to state (0,1).

It remains to prove that µq is optimal in the current environment. Proposition
2 implies that µq is optimal among mechanisms that do not utilize swapping on
the equilibrium path. Next, suppose a mechanism involved households swapping
queues with probability k, in state (2,−1), where 0 < k < 1. The willingness to
randomize would imply that present households are indifferent between the two
queues. Such a mechanism must fail to improve upon µq with respect to allocative
inefficiency in state (2,−1). To see why, note that under the two state mechanism,
households always sincerely apply except when in state (2,−1) in which case they
are immediately matched and exit the market. It remains to show that such a mech-
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anism cannot reduce the proportion of time spent in state (2,−1) through swapping
in either state.

Suppose a mechanism involved households swapping their queue in state (1,0)
with probability 0 < k < 1

2 , while incoming households sincerely apply. The will-
ingness of the present household to randomize implies they are indifferent between
the two queues. This is despite the fact that the present household knows there is a
1
2 chance that the incoming household is of type-B and enters queue B. However,
the incoming household of type A then must strictly prefer to enter queue B. To see
why incoming households prefer to enter queue B, note that there is a k < 1

2 chance
that the present household enters queue B. If the present household was indifferent
between the two queues, then the incoming household must have a strict preference
for queue B. Then, allocative inefficiency under such a mechanism is equal to that
of the pooling mechanism.

Last, suppose instead that 1
2 ≤ k < 1. For households to be willing to switch

queues, either ΦA(1,0) < ΦB(1,0) or incoming households must not be applying
sincerely. In both cases, allocative inefficiency is comparable to that of the pooling
mechanism, which by assumption is suboptimal.

E Suboptimality of Markovian Mechanisms

While throughout this paper we focus on Markovian mechanisms, we note that
doing so is with potential loss of generality. To provide intuition for why the optimal
mechanism is not necessarily Markovian, we construct a mechanism that improves
upon the oversubscription mechanism developed in Section V.B when N = 2. How-
ever, while the optimal probabilities change, the structure of the optimal mechanism
is similar to the mechanisms utilized throughout the main body of the paper.

We weaken the Markovian assumption and allow the government to condition
ΦA

t not only on st but also on st−1. That is, the government can “reward” house-
holds from the previous period that have waited.35 We focus on allocation in state

35In the strictest sense, the BTO mechanism used in Singapore is non-Markovian: applicants who
remain unmatched after three tries are granted an additional lottery draw if they apply to develop-
ments in non-mature estates. Since a minority of applicants actually benefit from this provision, we
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(1,1), where incentive constraints are lax for incoming households of either type.
The government can then modify the allocation probabilities in order to better in-
centivize sincere applications in states (2,0) and (0,2). Altering notation slightly,
we use ΦA

n (s) to indicate the probability with which the government builds a type-A
apartment in state (s) when the previous state was (n,2−n).

Again, previous reasoning implies that in order to implement the first-best, if
the state is (2,0) or (0,2) the government must always build a type-A or type-B
apartment respectively. However, in state (1,1), the government may build either
apartment type freely. We will suppress the state when indicating ΦA

n (1,1), since
ΦA

n (2,0) = 1 and ΦA
n (0,2) = 0. Utilizing our above methodology, we proceed by

computing the expected waiting times for a household in each queue. We will
slightly alter our notation to accommodate the new conditioning of w. Let wT,n(s)

indicate the expected waiting time for a household in queue T when the previous
state was (n,2− n) and the current state is s. Similarly, WT,n(s) indicates waiting
times for the incoming household.

In state (2,−1) all incoming households are allocated to queue B. If there are
different wait times depending upon their reported type, they are incentivized to
misreport their type in state (2,−1). In the following equations, we drop unneces-
sary notation. Then, the following system of equations defines expected wait time
for an individual already in queue A:

wA,n(2,0) =
1
2
· 2

3
(1+w(2,0))+

1
2
· 1

2
(1+w2(1,1)),

wn
A(1,1) =

1
2
[ΦA

n (1,1)
1
2
· (1+w1

(a,A)(1,1))+(1−Φ
A
n )(1+w(2,0))]

+
1
2
· (1−Φ

A
n )(1+w1

(b,A)(1,1)).

We compute the the following expected wait times for each state, and use the
symmetry of the problem to deduce that ΦA

1 = 1−ΦB
1 and ΦB

2 = Φ0
A:

abstract from this technicality in the body of the paper.
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w(2,0) =
76−37ΦA

1 −15ΦB
2

44−29ΦA
1 +9ΦB

2
,

w2(1,1) =
100−31ΦA

1 −61ΦB
2

44−29ΦA
1 +9ΦB

2
,

w1
b(1,1) =

3(12+11ΦA
1 +ΦB

2 )

44−29ΦA
1 +9ΦB

2
,

w1
a(1,1) =

100−95ΦA
1 +3ΦB

2
44−29ΦA

1 +9ΦB
2
,

w0(1,1) =
36−31ΦA

1 +67ΦB
2

44−29ΦA
1 +9ΦB

2
.

The next step is to then compare expected wait times for individuals in different
settings, we begin with a type-B household in state (2,0). The household knows
that the supplied apartment will always be type-A, and must decide if waiting is
worthwhile:

WB(2,0) = 1+w2
b(1,1),

WA(2,0) =
2
3
(1+w(2,0)),

WB(2,0)−WA(2,0) =
1
3
+w2

b(1,1)−w(2,0),

=⇒ γ ≥
16(ΦA

1 −5ΦB
2 )

−44+29ΦA
1 −9ΦB

2
.

An identical restriction can be computed in state (0,2) by the symmetry of the
problem.

Last, we compute the differences in wait times in state (1,1) dependent upon
the previous period’s state and report.

When the previous state and report are s and r:
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W(r,B),n(1,1) = Φ
A
n (1+w(2,0))+(1−Φ

A
n )

1
2
(1+w1

A(1,1)),

W(r,A),n(1,1) =
ΦA

n
2
(1+w1

A(1,1))+(1−Φ
A
n )(1+w(2,0)).

In effect, the wait times are the same, except ΦA
n is replaced with (1−ΦA

n ).
Hence, setting both equal to 1

2 was previously optimal. In this instance, since this
constraint is lax in state (1,1), changing these values may weaken constraints in
states (2,0) and (0,2).

This observation generates the following differences in wait times:

W 2
(r,B)(1,1)−W 2

(r,A)(1,1) =
4(ΦA

1 +3(−4+ΦB
2 ))(−1+2ΦB

2 )

44−29ΦA
1 +9ΦB

2
,

W 1
(r,B)(1,1)−W 1

(r,A)(1,1) =
(4(−1+2ΦA

1 )(Φ
A
1 +3(−4+ΦB

2 ))

44−29ΦA
1 +9ΦB

2 )
.

Then, we proceed by minimizing these differences in wait times through se-
lection of C. Rudimentary optimization yields ΦA

1 = .28 = ΦB
2 and γ ≥ .48. This

mechanism delivers a substantial improvement upon the minimal γ for N = 2.

F Labelling

In this section, we consider the impact of relabelling one of the apartment types
on the set of achievable outcomes. In particular, suppose that apartment type B was
relabelled as two separate types B1 and B2. All preferences are maintained, that is
if a household is of type B, then it gains h in utility from receiving either B1 or B2.
Similarly, a type-A household gain l in utility from receiving either B1 or B2. The
government can choose any of the three housing types when building an apartment.

Consider what happens if the government implements the previous first-best
mechanism, replacing any instance of a type-B apartment with apartment type B1.
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Similarly, any household that would have previously applied for a type B apart-
ment instead applies for apartment type B1. Households still always wish to ap-
ply sincerely, the existence of an extra housing type that will never be constructed
provides no incentive to deviate. Then, the previous strategy profile remains an
equilibrium. Furthermore, suppose the mechanism involved some form of random-
ization between the two different housing types. Then, with positive probability, an
apartment will lie vacant, implying that the first-best cannot be achieved.

Lemma 13. The first-best in the standard two type case can be achieved if and only

if it can also be achieved under relabelling.

G M Apartment types

Here we consider the impact of actually increasing the number of apartment
types. Suppose there are now |Θ| = 3 different types. Households are still born
with a type in Θ. If they receive an apartment of their type they gain h in utility, if
they receive a different apartment type they receive l.

Consider the first-best outcome. Begin with µ f b from the |Θ|= 2 case. House-
holds still wish to apply sincerely here. A household that did not receive an apart-
ment in the previous period never has an incentive to manipulate because they know
an apartment of their type will be built in the current period. Incoming households
of a different type face the exact same incentive constraint as in the original model,
and so face no incentives to switch. Lastly, incoming households that match the
current type never have incentive to switch under this mechanism, and so it remains
an equilibrium.

Furthermore, no other mechanism can achieve the first-best, because they risk
a positive probability of vacancies. Lastly, this argument holds for all |Θ| > 2; the
above arguments do not utilize the fact that |Θ|= 3.

Lemma 14. The first-best in the standard two type case can be implemented if and

only if it can also be achieved in the m type case.
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H Optimal Exogenous Mechanism

Leshno (2022) explores a mechanism with exogenous supply that minimizes
manipulation. His paper allows for any method of constructing queues, whereas we
have only studied mechanisms similar to BTO. A key assumption in Leshno (ibid.)
is that (1/2)γ ≥ 1, or that γ ≥ 2. As shown in Section IV.A, when γ ≥ 2 with en-
dogenous supply, inefficiency is zero. To contrast, when γ = 2 the best mechanism
with exogenous supply can only maintain a queue length of 1. Theorem 2 shows
that the policy that maximizes the length of the queue, which in the exogenous set-
ting is equivalent to minimizing manipulation, is the Load Independent Expected
Wait (LIEW) policy.

Under the LIEW policy, all agents expect to wait 2 periods upon entering a
non-empty queue. This policy minimizes the average wait time, but nonetheless
generates manipulation whenever the queue stretches past 1 agent in length. Theo-
rem 2 in Leshno (ibid.) shows that the policy generates a misallocation rate of:

m =
2p(1− p)

(1− p)k+ pk+1
,

where k = 2pγ −1 = 1. In our setting, there is an equal arrival rate of both type-A
and type-B households, so p = 1/2. This implies that the overall misallocation rate
is m = 1/4.36

36Vacancies also occur under LIEW, but since LIEW is not designed to reduce vacancies, to
provide a fairer comparison, we only consider efficiency losses arising from misallocation.
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