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Abstract

I introduce a framework for studying transient matching in decentralized markets where workers

learn about their preferences through their experiences. Limits on the number of available po-

sitions force workers to compete over matches. Each capacity-constrained firm employs workers

whose match value exceeds a threshold. Since employment offers both payoff and information

benefits, workers effectively face a multi-armed bandit problem. To them each firm acts as

a bandit where the probability of “success” at the firm is driven by market competition. In

such markets, aggregate demand for firms satisfies the gross substitutes condition which en-

sures equilibrium existence. The resulting search patterns match a variety of stylized facts

from labor market data. High-quality workers search less and tenure increases with age. In

general, equilibria are inefficient because competition depresses the level of search. Natural

interventions designed to improve efficiency are effective in uncongested markets, but can fail

when congestion is several. From a market design perspective, the utilization of headhunters

has differential effects depending on workers’ quality, conclusively improving both outcomes for

low-quality workers and overall efficiency. Reducing congestion through unemployment benefits,

can depress search and may ultimately reduce match efficiency.
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1 Introduction

1.1 Overview

In many markets, participants learn about potential matches via pairing. In labor markets,

employees often learn about a company’s culture on the job; in residency markets, aspiring doc-

tors learn about their preferred specialties through apprenticeships; and in marriage markets,

individuals learn about prospective spouses through dating. Such markets are often congested:

Firms hire a limited number of employees; hospitals have federal funding limits capping the

number of residents they can hire; and many relationships are monogamous. Congestion limits

the ability of agents to learn: a worker who is not hired cannot learn her match value with a firm.

How do agents strategically search in congested matching markets? When agents learn through

matching, who ultimately is matched with whom? How do common interventions—hiring inter-

mediaries or increasing unemployment benefits—change the quality of matches?

This paper develops a novel model of learning through matching when there is a limited num-

ber of positions available. I extend techniques from the operations literature on multi-armed

bandits to determine workers’ equilibrium search patterns, when the rewards from search are

endogenous. I characterize the set of equilibria in congested markets with transient matching. In

general, equilibria are inefficient due to competition depressing the level of search. In line with

empirical work on tenure, in equilibrium, workers with higher unanticipated match values, as

well as older workers, search less (Gorry 2016). I consider the impact of two common policy in-

terventions: introducing informed intermediaries—headhunters—and increasing unemployment

benefits. Both interventions unambiguously improve welfare when the market is not congested.

I show that revealing information about a firm’s match values through an intermediary still

improves total equilibrium welfare, though benefits are unequally distributed among workers.

Increasing unemployment benefits intensifies competition—which can be detrimental to wel-

fare—when there is a commonly known top firm. In contrast, when markets are uncongested,

unemployment benefits always improve equilibrium welfare.

In the model, a continuum of workers repeatedly search for jobs at a finite number of firms.

Workers differ in their observable characteristics, but do not know their fit at a given firm until

they are hired by that firm.1 Each period, every worker applies to a single firm. Firms interview

their set of applicants and hire the workers with the best fit subject to capacity constraints.

Hired workers learn about the quality of their match, while rejected workers only learn of their

rejections.2 Workers and firms split the surplus from matching. At the end of the period,

1For instance, a young graduate of computer science would know her grades and the school she attended, but
might not know that a position at Google would feature her best fit.

2Results in the empirical literature on search motivate the modelling choice that workers only learn upon being
matched (Menzio, Telyukova, and Visschers 2016). In the appendix, I show that the qualitative results are similar
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workers retire with a fixed probability, exiting the market. At the beginning of the next period,

a proportional mass of workers is born.

A novel technical contribution of the paper is showing how workers evaluate the set of firms

as a multi-armed bandit problem. I show that firms act as endogenous bandits. In the standard

multi-armed bandit problem, a single decision-maker explores a fixed set of bandits. An impor-

tant difference in this setting is that multiple workers simultaneously compete over a limited

number of positions at firms. The reward from a given firm depends on the probability of hire

at that firm. However, the probability of hire is endogenously determined by workers’ strategies.

Hiring thresholds suffice as a manner of describing competitive forces and the ability to learn in

equilibrium. Despite the fact that workers simultaneously learn and optimize, thresholds fill a

role similar to that of prices in competitive equilibrium. Allowing thresholds to adjust is enough

to guarantee an equilibrium exists. While prices and thresholds fill a similar role, the two are

not interchangeable. In particular, a worker’s choice to apply to a firm does not correspond to

demand for that firm in the event the worker is not qualified enough.

Firms act as endogenous bandits whose rewards are determined in equilibrium. Utilizing the

multi-armed bandit characterization, I show that aggregate demand over firms satisfies the gross

substitutes condition of Kelso and Crawford (1982). This condition enables the development of a

threshold adjustment process, wherein thresholds converge to a fixed point equilibrium in which

firms’ hiring thresholds are consistent with workers’ behavior. To the best of my knowledge, my

model is the first to endogenously determine the rewards of experimentation through competition

in a market setting.3 Additionally, the techniques easily extend to other markets. I show in the

appendix that gradual learning, heterogeneous discounting, and flexible firm capacities can all

be incorporated into the model, without affecting qualitative results, as none cause the gross

substitutes condition to be violated.

The model can be fruitfully applied to data on workers’ tenure that has been presented in

labor markets. Two facts have emerged from studies of employment. Workers’ transition rates

between jobs decrease with age (Menzio, Telyukova, and Visschers 2016), and higher quality

workers are more likely to be satisfied with any given match (Network 2017) compared to lower

quality workers. I show that both facts are a natural consequence of transient matching with

incomplete preference information. Older workers have had more chances to investigate firms,

and so are likely to have found a satisfactory match. Then, an older worker’s incentive to test

out other firms is lower than that of a young worker with far more unexplored options to choose

from. As for the second fact, I show that if two workers share a prior regarding their fits at firms,

the worker with higher realized fit will search less. Her matches provide more surplus than the

if workers learn upon applying.
3For an example with experimentation in a setting with publicly shared information, see Bergemann and

Välimäki 1996.
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other worker’s matches do. If she is not perfectly informed, she may believe her outside options

are equivalent to those of the other worker. Then, she wishes to continue searching only if the

other worker also wishes to continue searching. As such, she spends weakly less time searching

relative to the other worker, and in turn has higher average tenure.

I investigate the impact of commonly suggested policy interventions targeting markets with

learning. One such policy is unemployment benefits, as in principle increasing these benefits

decreases the cost of search, which allows workers to be more selective. However, when workers

have the option of returning to a firm that previously hired them, unemployment benefits also

reduce the cost of taking a risk by applying to a competitive firm. When a firm is highly ranked

by all workers, increasing unemployment benefits tempers workers’ incentives to investigate other

firms. In equilibrium, this can lead to underutilization of these firms and decreased surplus.

Next, I characterize the impact of revealing information about a firm’s match values. For

example, suppose Google held an open house or hired headhunters, informing all workers of

their match values at Google. The revelation has two direct effects. Workers who realize that

they are poor fits for Google avoid it, while those who are well-suited for Google target it. The

workers with lower Google-specific match values strictly benefit from the revelation, while the

effect is ambiguous for workers with higher Google-specific match values. As those who are poor

fits avoid Google, they intensify the level of competition at other firms. When the market is

sufficiently congested, this channel harms workers who would have been good fits at Google.

Last, my model provides insight regarding the influential empirical literature on search

(Chade, Eeckhout, and Smith 2017). Models in this literature typically assume firms can add

or subtract positions at no cost: if a worker could productively match with a firm, that firm

can always add an extra job.4 In the long run, markets can be expected to adjust, so this is

a reasonable assumption. However, on the shorter timescale at which workers make strategic

decisions, firms may be unable to freely add and remove positions. In many scenarios, such

as when jobs are unionized or during a recession, firms may not be able to respond to an in-

crease in labor supply. In markets with transient matchings, like the described examples, my

model shows that calibrated search models which omit the effect of competition can yield up-

wards biased estimates of worker match quality. To see why, note that the incentive to search

is decreasing in the quality of the current match and increasing in the expected value of the

outside option. When outside options become less competitive, workers must value their cur-

rent positions more greatly in order to not switch. Thus, when firms can freely add positions,

workers must value their current positions more highly in order to not transfer. Understanding

the quality of matches present in equilibrium is critical when evaluating the efficacy of potential

4For examples of search models where firms have flexible positions, see Christensen et al. (2005), Menzio and
Shi (2011), and Postel-Vinay and Turon (2010).
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counterfactual policy changes. As such, systematically biased estimates of match quality can

generate incorrect conclusions about the impact of new policies.

The model focuses on markets with non-transferable utility. Despite this, the model applies

more broadly to markets where wages are determined independently of match quality. When

wages are fixed across realized match values, my qualitative results hold. Many labor markets

feature fixed wages. Hall and Krueger (2012) find that less than 35% of job-seekers bargain over

wage; most job-seekers accept posted wages. As a result of laws or bargaining, government and

union jobs have fixed wages. In France, public school teachers are allowed to apply yearly for

placement in any region (Combe, Tercieux, and Terrier 2018). Wages are fixed across regions,

conditional on total experience, and so the value of a match depends primarily on the teacher’s

fit.

I relax the assumption of non-transferable utility in Section 6. To do so, I extend the model

to a competitive equilibrium setting, where equilibrium wages are strategically chosen by firms.

My qualitative results extend to the transferable utility setting. I also show that resumes—the

ability of a worker to prove she has been previously hired elsewhere—play an important role in

information transmission. Without them, competitive equilibria may fail to exist.

My results have several implications for designing centralized mechanisms. In many markets,

while the original matching is centralized through an algorithm, agents may be free to rematch

after their initial assignment. Agents that are aware of this may alter their initial applications

accordingly, skewing the initial outcome of the market. In particular, when agents have in-

complete information about their match values, and that incomplete information is correlated

with their potential for success on the aftermarket, standard algorithms such as deferred accep-

tance may no longer be strategy-proof. Through understanding how agents with heterogeneous

incomplete information match in decentralized markets, we can better understand the impact

aftermarkets have on centralized settings.

1.2 Related Literature

This paper relates to several distinct literatures: matching with incomplete information, dynamic

matching, directed search, and bandits with collisions.

There is a burgeoning literature on matching with incomplete information. Previous work

has focused on settings with centralized clearing houses, whereas in this paper I consider decen-

tralized markets, to better match settings such as labor markets or dating markets. Immorlica

et al. (2020) consider school choice where students have incomplete preference information and

dynamically learn through costly inspection. They solve the mechanism design problem of gen-

erating “regret-free stable” outcomes, wherein agents never regret their search decisions. There

are two key differences between their setup and mine. First, they study a centralized one-shot
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school choice market, with fixed participants. Second, the cost of inspecting a school in their

model is fixed and exogenous. Doval (2022), Liu et al. (2014), and Liu (2020) study stable

outcomes in markets with incomplete information. Chen and Hu 2020 provide a dynamic jus-

tification for stability with incomplete information, in which firms evaluate potential employees

according to their “worst” possible match values. These works focus on one-shot matching mar-

kets, in which no new participants enter the market after the game begins. In many dynamic

environments, including the examples from the previous section, this fails to be the case.5

Similarly, recent work in the matching literature has begun to incorporate dynamics.6 Ak-

barpour, Li, and Gharan (2020) consider dynamic markets with networked agents, and solve

the designer’s problem of choosing which agents to match. Anderson and Smith (2010) exam-

ine matchings where agents form reputations regarding their quality over time and show that

positive assortative matching emerges over time. Ferdowsian, Niederle, and Yariv (2022) are

at the intersection of decentralized dynamic matching and matching with incomplete informa-

tion, and study the hurdles to stability that arise, even in one-shot markets. The paper shows

that stringent assumptions are required to ensure stable matchings are equilibrium outcomes in

markets with incomplete information. Kadam and Kotowski (2018) also consider markets with

transience, and treat the problem from a more classical view of stability. They find conditions

under which dynamic stability can be generated in a setting where a centralized authority may

be necessary for finding the stable matching. I place more structure on agent’s preferences,

which enables me to study the related problem in a decentralized environment.

The directed search literature has studied labor markets where workers intentionally target

firms.7 Within the search literature, this paper connects two strains, search with marriage

matching and search with frictions. Dagsvik, Jovanovic, and Shepard (1985), Jovanovic (1979),

and Miller (1984) consider variations of a single-agent directed-search problem.

Technically, this setting is reminiscent of the multi-armed bandit setting. The solution to the

standard multi-armed bandit problem was found by Whittle (1980). Weitzman (1979) studies

the mathematical problem where a decision-maker chooses when to stop testing alternatives.

Several papers on multi-armed bandits with collisions have recently emerged in the computer

science literature, (see Liu, Mania, and Jordan 2020 and Liu et al. 2021). These papers assume

that agents know how they are ranked by the other side of the market. In many practical

situations, agents face uncertainty regarding their acceptance prospects not only because they

are unaware of their competition, but also because they do not know how they will be ranked.

5There are also several examples of centralized markets with incomplete information. For instance, Fernandez,
Rudov, and Yariv (2022) show that standard predictions of centralized markets are not robust to perturbations
of information, while Li, Wang, and Zhong (2016) experimentally tests predictions of truth telling.

6For a brief survey of the literature on dynamic matching, see Baccara and Yariv (2021).
7Chade, Eeckhout, and Smith (2017) provide a useful survey of the extensive literature studying directed

search.
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Another key difference between this paper and the literature on bandits with collisions, is that

extant algorithms fail to satisfy incentive compatibility when firms disagree on the rankings of

workers.

2 The Model

I begin by describing the agents involved. The market matches a continuum of workers with

a finite set of firms, |F| = F . Workers are categorized based on observable information, their

class, and unobservable information, their type. A worker knows her class, c ∈ C, where C is

finite. For instance, a worker knows the school she graduated from, or the grades she received.

If a worker had complete information, she would also know her type, θ ∈ c, describing her match

value with each firm. Specifically, θjw is the match value she receives from matching with firm

j, while θjf is firm j’s value from the match. θ = {(θjw, θjf )}j∈F ∈ [0,K]2F , is a type-θ worker’s

vector of match values across firms. Instead of knowing their types, workers know each class’s

distribution over types. When there are a finite number of types, mc(θ) denotes the total mass

of class-c type-θ workers; otherwise, mc(θ) denotes class c’s density of θ. The total mass of class

c, mc =
∫
θ∈cmc(θ)dθ, is the summation of mass across all types of class c. I normalize the total

mass of workers to 1:
∫
cmcdc = 1.

Each firm j has a hiring capacity of m(j) > 0, limiting the mass of workers he can hire

each period. A market is a triplet M = (F , C,m). I assume that a worker’s class already

encapsulates any correlation in match values across firms. That is, worker i learning her match

value at firm j, is not informed regarding her match value at firm j′, conditional on worker

i’s class. Workers learn about their fit at individual firms, as opposed to learning about their

preferences for certain fields or industries. Let mj
c(x, y) =

∫
{θ|(θjw,θjf )=(x,y)}mc(θ)dθ be the mass

of class-c workers with match value (x, y) at firm j. Then, the absence of cross-firm learning

can be formally stated as:

mj
c(θ) =

∏
j∈F

mc(θ
j
w, θ

j
f ).

The matching process is straightforward. Each period, every worker chooses a single firm to

apply to. The choice of worker i to apply to firm j in period t is denoted by ai(t) = j. Then,

each firm observes his list of applicants; j observes aj(t) = {i|ai(t) = j}, and learns his match

value with each applicant, θjf .8 Firms cannot distinguish between workers of the same class with

8The application process can be thought of as containing an interview stage that informs firms. Because firms
have previous experience with hiring workers, they are more informed about the quality of the match. Interview
frictions have been previously discussed in the matching literature (Lee and Schwarz 2017). To refine the focus
on transient matchings in this paper, I abstract from these frictions in the interview process.
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equal firm match values. For instance, if two workers of types θ and θ′ share a class, apply to

firm j in a given period, and θjf = θ′jf ; then j must hire workers of the two types with equal

probability.

Ai(t) ∈ F ∪ ∅ denotes worker i’s match in period t, if Ai(t) = ∅, i is rejected. Should a

firm j hire a worker, that worker is accepted. A type-θ worker accepted by firm j receives θjw,

while the firm receives θjf .9 A rejected worker receives θ∅w = 0.10 The market structure makes

all matches transient, a worker that wishes to stay at a firm must apply for it every period. The

set of workers hired by firm j in period t, is Aj(t). Let m(Aj(t), θ) denote the mass of type-θ

workers in Aj(t). Then, firm j’s period-t profit is:

πj(t) =

∫
θ∈Aj(t)

θjfdm(Aj(t), θ)

Profits are discounted at a rate of δ. Each firm aims to maximize the sum of discounted

profits, π:

π =
∞∑
t=0

δtπ(t).

Workers retire with probability 1 − δ at the end of each period, exiting the game. When a

type-θ worker retires, a new type-θ worker enters the market. Critically, the new worker will

no longer have the information that her predecessor acquired through play. In total, a mass of

(1 − δ)mc(θ) class-c type-θ workers are born each period. The fact that workers stochastically

exit has two implications. First, a worker’s expected utility remains equivalent to the classical

discounting interpretation. Second, the distribution of worker-type masses remains unchanged

over time, generating a stationary environment.

When a worker enters the market, she is unaware of her exact type, but knows her class.

Upon acceptance by firm j, a type-θ worker learns θjw.11 Rejected workers only learn of their

rejection. There is no public history, rather workers can only learn through applying to firms.

Workers aim to maximize their lifetime expected utility. That is, worker i of class c, chooses

9The main body of the paper focuses on non-transferable utility. As discussed in the introduction, several
recent empirical results support this assumption. For instance, Becker (2011) shows that as much as 40% of
benefits from employment are non-wage based, implying that proper matching is critical. In Section 6, I extend
the model to a transferable utility setting where firms choose match-value dependent wages. I show that the key
results carry over to the transferable utility case.

10In Section 5.2, I consider the impact of adding unemployment benefits to the market, modelled by θ∅w > 0.
11Other models of learning on the job, such as Jovanovic (1979), use more gradual learning processes, where

a worker receives a noisy signal of the true match value. Since the implications generated by gradual learning
have already been discussed in the search literature, I instead assume learning is immediate, to isolate the effect
of competition. In Appendix section B.1, I show that the core results of this paper still hold when learning is
gradual.
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how to apply to firms, to maximize:

U ci = Ec

[ ∞∑
t=0

δtθAi(t)w

]
To eliminate equilibria that depend upon coordination, or time-specific applications, I refine

the set of equilibria to those supported by Markovian strategies. The state variable for a worker

is the tuple of her payoff-relevant variables: her class, and her posterior over her type. For a

given strategy profile, firms face no payoff-relevant dynamic uncertainty, so their payoff-relevant

variable in a given period is the types of their applicants. Let hit denote the private history

for a worker i of age t, consisting of her application and realized match values in each period,

hit = ((ai(1), θ
Ai(1)
w ), (ai(2), θ

Ai(2)
w ), . . . , (ai(t− 1), θ

Ai(t−1)
w )). For a given history, hit, and strategy

profile σ, a class-c worker’s posterior regarding her type can be computed using Bayes rule, and

is an element of ∆Θ.

Definition (Markovian Strategies). A worker i’s strategy is Markovian, if in each period, her

application is only a function of her class and the posterior over her type. A firm’s strategy is

Markovian, if in each period, the set of workers hired is a function of the firm’s distribution over

applicant match values.

The focus on equilibria in Markovian strategies rules out equilibria that depend on the

calendar period. A strategy profile is Markovian if in that profile all agents use Markovian

strategies. Similarly, an equilibrium is Markovian if the associated strategy profile is Markovian.

The state of the market, is the proportion of workers with each possible posterior over their

type. A state is denoted by µ = {µc}c∈C , where µc ∈ ∆Θ denotes the posteriors of class-c

workers. Throughout the paper, I focus on the steady state generated by a strategy profile, σ—a

state that is self-perpetuating when agents follow strategy profile σ. Namely, let the transition

map, uσ : ∆Θ→ ∆Θ, denote the mapping from a current state to next period’s state when the

strategy profile is σ. If for all c, uσ(µ) = µ, then µ is a steady state.

A Markovian strategy profile is an equilibrium only if no agent has a profitable deviation in

the steady state. This amounts to requiring firms to be unable to commit to a hiring policy.

A firm’s strategy is part of an equilibrium strategy profile, only if in the steady state of that

equilibrium, the firm does not wish to deviate in any period after observing his applicants. Where

appropriate, I drop time indices. Last, to deal with a trivial source of non-uniqueness, this paper

considers the matching outcomes that result in the “long-run” for a Markovian strategy profile

that constitutes a Perfect Bayesian Equilibrium.
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Definition (Outcomes). An outcome for market M, of a Markovian strategy profile σ, is the

distribution over each types’ applications to firms in the steady state of σ.12

An outcome is the payoff-relevant information for a snapshot of the market. Namely, out-

comes include the proportion of information each worker has learned, as well as their choice of

firms to apply to. Restricting attention to the outcomes of Markovian strategy profiles removes

another trivial source of non-uniqueness. Should a worker have two strategies which differ con-

ditional on information regarding a firm j that she never applies to under either strategy, the

outcomes of the two strategies are equivalent.

3 Incomplete Information Generates Transience

I begin by analyzing the benchmark case where workers are fully informed about their type. I

find that market outcomes do not exhibit transience, instead workers follow static application

strategies. In this section, I detail how the complete information setting exemplifies the inter-

play between transience and information. Should an outside observer compare outcomes in a

complete information market with transient matchings to outcomes in a market with permanent

matchings, she would be unable to distinguish them. In the following section, I show that the

complete information case is similar to the case where long-lived workers have incomplete pref-

erence information. However, several key differences emerge between the two. With incomplete

information, worker outcomes exhibit path dependence—the results of a finite number of initial

applications determine their long-term earnings. Furthermore, when markets are congested,

workers may be persistently matched to firms different from those they would be matched to

under complete information.

To begin, I develop a benchmark for the case where workers are fully informed, and workers

and firms agree on the value of each match. That is, match values are aligned.13 Match values

are aligned if they can be represented by a joint “ordinal potential.” This is similar to the

notion of potentials in normal-form games (Monderer and Shapley 1996). Formally, alignment

is satisfied if there exists a matrix Φ = (Φθj)j∈F ∈ R, such that for any types θ, θ′ ∈ C and firms

j, j′:

If θjw > θj
′
w then Φθj > Φθj′ and if θjf > θ′jf then Φθj > Φθj′

For instance, if workers and firms split the surplus from any match according to a fixed

12I show in Section 4.1 that every Markovian strategy profile generates a unique steady state, and therefore
this notation is well-defined.

13The term aligned comes from Ferdowsian, Niederle, and Yariv (2022), in which alignment is shown to be
critical for the emergence of stability in decentralized markets.
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proportion, match values are aligned: ∃α s.t. ∀j, θ : θjw = αθjf .14 Alignment will imply that a

firm cannot reject a worker and trigger a cycle of other firms’ rejections, which culminates in

a preferred worker’s application.15 When match values are aligned, I will simplify notation by

letting, ∀θ, j θjw = θjf = θj , but the results hold more generally for any aligned match values.

Definition (Complete Information Market). A market MI is a complete information market,

if every worker class c contains a single type.

In a complete information market, all workers are perfectly informed about their match values

at each firm. Suppose all match values are strictly ordered. Then, there exists some class-c∗

and firm j∗, such that class-c∗ workers and j∗ generate the maximal match value: (c∗, j∗) =

arg maxc,j∈E θ
j
c . Class-c∗ workers must apply to j∗ with positive probability. Otherwise, some

class-c∗ worker, i, would benefit by deviating and applying to j∗. Because no other class-c∗

workers are applying to j∗, i is guaranteed to be hired since j∗ prefers i to any other applicant.

Furthermore, by switching her application, i will receive a higher match value than she would

have previously. Indeed, either all class-c∗ workers must apply to j∗, or at least enough must

apply to force j∗ to begin rejecting class-c∗ applicants. If too many class-c∗ workers apply to

j∗, the resulting competition may leave class-c∗ workers preferring their second choice, j2 =

arg maxj 6=j∗ θ
j
c∗ . Firm j∗ is oversubscripted if class-c∗ workers would prefer guaranteed hire by

j2 to applying to j∗ when all other class-c∗ workers apply to j∗ as well: m(j∗)
m(c∗)θ

j∗

c∗ < θj2c∗ . In the

event of oversubscription, at least m(j∗)
θj
∗
i∗

θ
j2
c∗

class-c∗ workers must apply to j∗.

If oversubscription occurs, j∗ is filled to capacity, otherwise all class-c∗ workers apply to j∗.

In either event, a submarket can be considered with strictly less agents thanMI . The previous

argument can be repeated in the submarket, removing another agent from the market. Extra

care must be taken if a class or firm that was previous part of an oversubscription is being

considered. I go into detail about how to ensure indifference in such a step, when I formalize

the procedure as the “Top-Down” algorithm in the appendix. Because there are a finite number

of classes and firms, the process must eventually terminate, in at most |C|+ |F| steps.

Lemma 1 (Complete Information Equilibrium). The Top-Down algorithm characterizes the

unique equilibrium outcome of MI when match values are aligned.

Matchings are permanent in complete information environments—workers apply to the same

firms every period. However, despite information being complete, decentralization inherently

14In this case, Φ = (Φθj)θ∈C,j∈F where Φθj = θjf for all θ, j serves as an ordinal potential.
15In Voorneveld and Norde (1997), it is shown that potential games cannot have cycles in the payoff matrix.

In this setting, their result will imply that markets with aligned match values cannot have rejection cycles. That
is, in equilibrium, no firm can reject a worker, and thereby trigger a change in applications such that the firm
receives an application from a preferred worker.
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generates two types of inefficiencies. First, workers that are qualified for desirable positions over-

compete for those positions. This feature of oversubscription generates significant congestion,

a negative externality on other workers of their class. Second, workers do not consider their

impact on other classes of workers. For instance, suppose there are two firms, F = {j1, j2},
each with a capacity of 1/2. There are two classes of workers, C = {c1, c2}, with match values

θ1 = (5, 4) and θ2 = (4, 0), and masses mc1 = 1/2,mc2 = 1/2. Then, in equilibrium, class-

c1 workers will always apply to j1, blocking class-c2 workers from being hired there. From a

utilitarian standard point, a more efficient outcome would involve class-c1 workers applying to

j2, while class-c2 workers apply to j1. Inherently, workers do not consider the externality they

impose on workers of other classes. As will be seen, introducing incomplete information adds

a third externality. Workers do not consider how their applications block other workers from

searching for good fits. In Section 4.5, I show that when workers have incomplete information

and become more long-lived, outcomes converge to the complete information outcomes, though

marked differences appear for individual workers.

4 Equilibrium Characterization

When workers have incomplete information and are not long-lived, they face a non-trivial trade-

off. Workers must decide between exploiting their information—applying to firms with high

expected match values; and learning—applying to new firms. When determining whether to

explore, workers must take into account other workers’ application decisions, which generate

competition over firms.

I proceed by characterizing best responses for both firms and workers. First, the following

section shows that in any strategy profile where a firm does not hire his most qualified applicants,

he has a profitable deviation. Once firms’ strategies are thresholds, workers can anticipate those

thresholds in equilibrium, and evaluate firms accordingly. Using techniques from the literature on

multi-armed bandits, worker behavior can then be determined. Then, because workers evaluate

firms as if they were bandits, demand for a firm is increasing in other firms’ thresholds. Using

this, I develop an algorithm to find a fixed point where the demand for each firm coincides with

the firm’s capacity and threshold, and show that the algorithm captures the unique equilibrium

outcome. Last, I show that worker’s search patterns aligns with empirical results.

Before proceeding, Lemma 2 shows that any Markovian strategy profile generates a unique

outcome, implying that the focus on steady state outcomes is well-defined.

Lemma 2 (Unique Steady State). Any Markovian strategy profile has a unique steady state.
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4.1 Hiring Thresholds

In Example 3, it was assumed that a firm would always hire his most qualified applicants in

every period, without regard for how doing so would impact future applications. I show that

firms’ equilibrium strategies can be described as threshold strategies.

When a firm’s strategy profile dictates he rejects workers more qualified than those he ac-

cepts, he has a profitable deviation. Through accepting workers with higher match values, the

firm is able to reap the benefit from hiring the qualified worker immediately, instead of delaying

the match value from acceptance to a future period. The key insight is that when match values

are aligned, a firm which rejects a worker with a high match value can only do so to incentivize

that worker to apply again in a future period. However, the rejection simply shifts back the

expected gains from matching with that worker, and so the firm would prefer to accept her in

the current period.

Proposition 1 (Firms Use Hiring Thresholds). Suppose match values are aligned. In the steady

state of any equilibrium, if firm j hires a worker with a match value of θjf , then firm j also

hires all applicants with match values above θjf . Additionally, if firm j hires below its capacity,

m(Aj) < m(j), then j hires all applicants.

A worker’s expected utility from a firm inherently depends upon that firm’s hiring decision,

which in turn is a function of the application strategies of other workers. There is a natural

ordering on worker types at firm j, θ % θ′ if θjf > θ′jf . Proposition 1 implies that the firms’

hiring decision can be summarized by the minimal hired θjf , and the probability with which

type-θ workers are hired. For a worker, a firm’s strategy is payoff-relevant only in how it affects

the probability of hire at that firm. This motivates a natural method of summarizing a firm’s

strategy, the threshold in match values below which it rejects applicants.

Definition (Hiring Threshold). A hiring threshold for some firm, j, is a tuple (vj , pj), which

consists of a match value and a hiring probability.

Crucially, in the steady state of an equilibrium, thresholds are time-invariant. To determine

firm j’s threshold, begin by finding the set of workers that apply to j within a single period.

Because firm j uses a threshold strategy, j hires a worker with the minimal match value. Let

θ be that worker’s type. Set vj to θ’s firm j match value, θjf , and pj to type-θ’s probability of

hire at j. If the mass of applicants received by j is below its capacity, m(aj) ≤ m(j), define j’s

threshold as (0, 1)—all applicants to j are hired in equilibrium.

A threshold suffices to describe a firm’s behavior in equilibrium. Workers can use vj and pj

to compute their expected utility from applying to firm j. If, for a worker type θ, θjf is above

12



vj , then type-θ workers are always hired by j. If θjf is below vj , type-θ workers are never hired

by j. Last, if θjf = vj , then type-θ workers are hired by j with probability pj .

It will be convenient to rank thresholds in the lexicographic order. A threshold, (vj , pj), is

greater than another threshold, (v′j , p
′
j), (vj , pj) � (v′j , p

′
j) if vj > v′j , or if vj = v′j and pj ≥ p′j .

(v, p) = {(vj , pj)}j∈F will refer to the vector of thresholds.

The optimality of threshold strategies is a direct consequence of firms’ inability to commit

to hiring policies. If a firm could commit to hiring workers of a given class, then that firm could

encourage certain classes of workers to apply through affirmative action policies. This would

enable the firm to attract highly qualified workers of types within those classes through the

promise of guaranteed jobs. I expand on this motive in Section 5.1.

4.2 Equilibrium Worker Strategies

Next, I discuss the characterization of a worker’s equilibrium strategy. As previously mentioned,

workers trade-off exploring firms where their match value is still unknown, and exploiting firms

that are known to be profitable matches. I discuss a technique from the multi-armed bandit

literature, which provides an index-based solution method that holds for any market where all

firms hire all applicants. I extend the technique to settings where the hiring probabilities are

endogenously determined, and show that the index solution carries over.

Definition (Gittins Index). (Gittins 1979) The Gittins index for worker i at firm j given history

hit, GIi(j, ht), is the solution to the following optimal stopping problem, where τ can depend upon

the realization of match values:

GIi(j, h
i
t) = sup

τ

Ei,hit
[∑τ

t=1 δ
tθjw
]

Ei,hit [
∑τ

t=1 δ
t]

Gittins indices provide a simple characterization of the benefits from learning. Intuitively,

the Gittins index of firm j for a class-c worker is her expected match value at j, weighted

by her ability to learn. Namely, the worker can strategically reapply to j conditional on the

realized match value. If the worker discovers a high match value at j she can take advantage

of the positive realization and reapply to j, instead of leaving immediately as she would after

discovering a low match value at j. The ability to strategically reapply biases the Gittins index

upward from the standard expected value, and incorporates a benefit from learning. When

describing the Gittins index of a newly arrived worker, I omit the trivial match history to

conserve space.

Determining the optimal worker policy can be done tractably, thanks to a result from the

operations literature. Rather than a worker worrying about the timing of learning and equilib-
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rium effects, the worker simply compares the equilibrium Gittins indices associated with each

firm. Naturally, these Gittins indices are endogenous objects, which depend on the proportion

of workers applying to each firm.

The above formulation is insufficient when firms do not hire all applicants. However, declar-

ing firm j’s threshold allows for the computation of each worker’s initial Gittins index at j.

To do so, simply replace each match value with the imputed match value condition on (vj , pj).

Suppose for an equilibrium strategy profile σ, the hiring thresholds are (v, p). Let ψθ(v, p) be a

type-θ worker’s realized match values given thresholds (v, p). That is:

ψjθ(v, p) ≡


θjw θjf > vj

pjθ
j
w θjf = vj

0 θjf < vj

What stopping strategy τ determines j’s Gittins index? It can be shown that the following

heuristic determines the value of GIi(j, h
i
t). Choose an arbitrary value x and apply to j. If the

resulting match value is above x, stay with j forever, τ = ∞. If the match value is below x,

leave j immediately, τ = 1. This procedure determines a value for the stopping problem if x

is equal to the value of the stopping problem. The maximal value of x determines the Gittins

index. Lemma 3 formalizes this heuristic computation.

Lemma 3 (Firms’ Equilibrium Indices). GIσi (j, hit) for a class-c worker i is characterized by

the fixed point solution to the following functional equation:

GIσi (j, hit) =
P
[
ψjw < GIσi (j, hit)

]
E
[
ψjw|ψjw < GIσi (j, hit)

]
+ 1

1−δP
[
ψjw ≥ GIσi (j, hit)

]
E
[
ψjw|ψjw > GIσi (j, hit)

]
P
[
ψjw < GIσi (j, hit)

]
+ 1

1−δP
[
ψjw > GIσi (j, hit)

]
In Example 3, determining the value of GIi(fs) was trivial.16 Since each worker knows her

match value at fs, for any choice of τ , GIi(fs) = 2. Computing GIi(fr) requires slightly more

work. First, consider the case where m(fr) = 1, that is, fr is not capacity constrained. Then,

fr must hire all applicants in equilibrium. If a worker applies to fr and receives a match value

of 1/2, she immediately knows her type is θl. If she applies to fr a second time, the numerator

of GIi(fr) is increased by 1/2δ, and the denominator is increased by δ. If GIi(fr) > 1/2, then it

can be shown that the solution of the stopping time problem induced by GIi(fr) never involves

applying a second time to fr after observing θfrw = 1/2. If the worker had applied to fr and

received a match value of 3, she would know that her type was θh. An extension of the previous

16As a reminder, both types had a match value of 2 at fs, while type-θh had a match value of 3 at fr and
type-θl had a match value of 1/2 at fr.

14



logic shows that if GIi(fr) < 3, the solution to the stopping time problem involves applying to

fr a second time upon observing θfrw = 3. Putting everything together, the value of GIi(fr) is

found by infinitely applying to fr, if type θh, and applying only once if type θl, yielding:

GIi(fr) =
1/2

(
3

1−δ + 1/2
)

1/2
(

1
1−δ + 1

)
Notably, when computing GIi(fr), the distribution over possible match values at fs was not

utilized. Even when the number of firms, F , increases, the number of computations to determine

all Gittins indices also increases linearly in F , one additional step for each additional firm.

Standard results in the operations literature show that, determining the optimal policy takes

two steps: in each period compute the Gittins index for each firm, then apply to the firm with

the highest Gittins index (Whittle 1980). Previous results involving directed search settings or

Gittins indices have required that only one decision-maker is present or that the decisions made

by each decision-maker are independent of one another.17 Through classifying firms’ strategies

as threshold strategies, the results are extended to settings where multiple workers compete over

matches.

4.3 Alignment Implies Uniqueness

In this section, I show that when firms and workers agree on the quality of each match, i.e.,

match values are aligned, there exists a unique equilibrium outcome under a mild condition on

payoffs. To do so, I first develop the following example, which illustrates the specificity in payoffs

required to generate non-unique equilibrium outcomes.

Example 1 (Non-Unique Outcomes). Rows represent worker types, while columns represent

firms. The mass of each agent is given in the first element of the corresponding row or column.

The match values for a worker and firm are given at the intersection of their row and column.

Class-c1 Workers

Firms
m(fr) = 1/2 m(fs) = 1/2

m1(θh) = 1/4 (4, 4) (3, 3)

m1(θl) = 1/4 (2, 2) (3, 3)

17For examples in economics, see Papageorgiou 2018, Rothschild 1974, Urgun 2021, and Weitzman 1979.
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Class-c2 Workers

Firms
m(fr) = 1/2 m(fs) = 1/2

m2(θ) = 1/2 (1, 1) (1, 1)

There are two worker classes, C = {1, 2}, two firms, F = 2, and δ = 0. When class-c1

workers are guaranteed to be hired, and indifferent over firms, there exists a multiplicity of

equilibrium outcomes.

Class-1 workers are indifferent between the two firms, and furthermore are never rejected in

equilibrium. Therefore, incoming class-1 workers are indifferent between the two firms in any

equilibrium. There exists a continuum of equilibrium outcomes characterized by the proportion

of class-1 workers that applies to fr.

The non-uniqueness of equilibrium outcomes cannot be trivially fixed by requiring each firm’s

Gittins index to be unique in the absence of firm hiring capacities. To see why, return to Example

1 and suppose class 1 contained several additional types, such that match values below 1 were

possible at both firms. In the absence of firm hiring constraints, class 1’s Gittins index at fr,

GI1(fr), would be higher than GI1(fs). In practice, the difference would not factor into class-1

workers’ decision-making, because in any equilibrium, workers with match values below 1 are

never hired.

Furthermore, Example 1 did not hinge on the absence of learning. Consider the same market,

with some δ > 0. A simple computation can be used to evaluate GI1(fr) =
1/2 4

1−δ+1/2·2
1/2 1

1−δ+1/2·1 while

GI1(fs) = 3. For δ > 0, GI1(fr) > GI1(fs) due to the option value of switching to fs if a low

utility is realized. However, a small adjustment to θrh can set GI1(fr) = GI2(fs). Replacing

θfrh = 4 with θfrh = 4 − δ ensures that the two Gittins indices are equal once more. In the

resulting market, there again exists a continuum of equilibrium outcomes. As such, a more

stringent condition is needed to rule out this trivial form of non-uniqueness.

The strict dynamic preferences assumption requires workers to not face indifference between

two firms when each firm hires deterministically. This assumption depends on δ, but only rules

out a finite number of parameters from an infinite set. The parameter set after strict dynamic

preferences are ensured is generic. For instance, the parameter set which generated multiple

equilibrium outcomes in Example 1 is eliminated by strict dynamic preferences, preventing

class-1 workers from mixing. Intuitively, strict dynamic preferences requires that the equilibrium

Gittins indices at any two non-competitive firms cannot be equal. It should be emphasized that

this assumption is exogenous, the assumption only depends on utilities and masses.
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Assumption 1 (Strict Dynamic Preferences). Let every type of worker class c have probability

of hire 0 or 1 at firm j and j′. Strict dynamic preferences holds if for every class c there does

not exist a type θ ∈ i such that the following hold:

• θ has probability 1 of hire at j

• GIi(j) = GIi(j
′), θjw = GIi(j

′), or θjw = θj
′
w

First, no strict dynamic preferences implies that two strategy profiles, which induce different

equilibrium outcomes, must also generate different hiring thresholds. The claim is formally

proved in the appendix. Given this, Proposition 2 shows that equilibrium outcomes must be

unique under strict dynamic preferences.

Proposition 2 (Unique Outcome). When match values are aligned and satisfy strict dynamic

preferences, there is a unique equilibrium outcome.

To provide intuition, suppose σ and σ′ are distinct equilibrium outcomes. Then, the thresh-

olds induced by σ and σ′ must be distinct. Without loss of generality, let firm j have a higher

threshold under σ than σ′, (vf (σ), pf (σ)) � (vf (σ′), pf (σ′)). Then, f must have more high

quality applicants under σ relative to σ′, otherwise it could not have a higher threshold. Those

applicants must come from another firm f ′ under σ′. For those applicants to switch to f , f ′

must be less attractive under σ. However, when match values are aligned, thresholds imply

that the quality of workers hired is monotonic, (vf ′(σ), pf ′(σ)) � (vf ′(σ
′), pf ′(σ

′)). Iterating this

logic implies that there exists a set of firms with higher thresholds. Since all involved firms have

binding capacity constraints, weakly more workers must be hired under σ. Furthermore, the

fact that all hiring thresholds are higher, implies that total worker utility is also higher. Then,

at least one class, c, must be strictly better off under σ. Since hiring thresholds were lower

under σ′, class-c workers can profitably deviate to their strategy under σ. Then, σ′ could not

have been an equilibrium outcome.

The uniqueness of equilibrium transient matchings is useful for the prospective econome-

trician. When estimating structural parameters, the statistician does not need to worry about

the problem of equilibrium selection. Instead, the unique equilibrium can be determined and

exploited.

4.4 Gross Substitutes in Equilibrium

In this section, I proceed by describing equilibrium strategies, utilizing firm thresholds to char-

acterize equilibria. Importantly, because workers evaluate firms as if they were bandits, their

demand for firms is increasing in other firm’s thresholds.
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First, I show that standard bandit results can be extended from settings where all firms

have unbounded capacities to equilibrium settings where firms can only hire a limited subset of

workers.

Lemma 4 (Firms are Endogenous Bandits). For any equilibrium strategy profile σ, for any

private history hit, each worker i applies to j ∈ arg maxj GI
σ
i (j, hit).

Lemma 4 shows that the optimal worker strategy for a given set of thresholds can be simply

determined. For each worker i, determine each firm’s Gittins index, potentially updating the

probability of each match value based on hit. Each worker i applies to a firm with maximal

Gittins index, j ∈ arg maxj GI
σ
i (j, hit). This application strategy prescribes a distribution over

learning paths for each worker type. In turn, the mass of informed worker types and therefore

the proportion of each type applying to each firm is fixed, as well as their equilibrium hiring

rates. Type-θ’s demand for firm j given thresholds (v, p) will be denoted Dθ
j (v, p). Aggregate

demand, D(v, p) is defined as the integral over all types’ realized demands.

Definition (Aggregate Demand).

D(v, p) =

∫
θ

Dθ
j1(v, p)dθ,

∫
θ

Dθ
j2(v, p)dθ, . . . ,

∫
θ

Dθ
jF

(v, p)dθ


The characterization of optimal index-based worker strategies has an additional feature.

When a firm increases its threshold, demand at other firms can only increase. To see why, note

that workers apply to the firm with the maximal Gittins index. Increasing a firm’s threshold

decreases that firm’s Gittins index for all types. Furthermore, the independence of the Gittins

indices implies that all other firms’ Gittins indices remain fixed. The increase in the threshold

will not change other firms’ demands unless it causes the Gittins index of one type at a firm

to exceed their Gittins index at another firm. Doing so, will shift that type’s demand to the

other firm. It can be shown that the effect on that type’s demand in future periods does not

exceed the immediate effect. More generally, increasing the thresholds of a subset of firm cannot

decrease the demand of firms outside that subset. Namely, aggregate demand satisfies the gross

substitutes condition, used in Kelso and Crawford (1982) and Gul and Stacchetti (2000), to prove

existence of equilibria. Let firm j’s demand, Dj(v, p) =
∫
θ

Dθ
j (v, p)dθ, be the demand across all

types for firm j. Then, gross substitutes is defined as follows.
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Definition (Gross Substitutes). Let F be a set of firms, F ⊂ F , and (v, p), (v′, p′) be two

thresholds, such that (vj , pj) = (v′j , p
′
j) for j ∈ F and (vj , pj) ≥ (v′j , p

′
j) otherwise. Gross

substitutes is satisfied if demand for F is greater under (vj , pj) than (v′j , p
′
j):

∀j ∈ F : Dj(v, p) ≥ Dj(v
′, p′)

Proposition 3. Aggregate demand satisfies gross substitutes.

Given Proposition 3, the equilibrium can be found through the threshold adjustment process.

The the threshold adjustment process follows five steps:

Step 1 (Remove Capacities): Treat every firm as if it had no capacity constraint: set all thresholds

to (vj , pj) = (0, 1).

Step 2 (Compute Demand): For every worker class, compute the Gittins index of each firm.

Using these Gittins indices, determine individual demand, and in turn, aggregate demand

for each firm.

Step 3 (Select Firm): If all firms’ have demand below capacity, ∀j,Dj(v, p) < m(j), terminate.

Otherwise, select a firm j such that j’s aggregate demand exceeds its capacity, Dj(v, p) >

m(j).

Step 4 (Reduce Capacity): Decrease the rate of hire for workers with the lowest match value at

firm j continuously, pj → 0. If pj reaches zero, repeat with the next lowest match value

at firm j. Stop when either enough workers are fired, or decide to apply to other firms,

Dj(v, p) = m(j). Importantly, Proposition 3 implies that increasing firm j’s threshold

never causes a decrease in demand for other firms.18

Step 5 (Repeat or Terminate): If there exists another firm j′ such that Dj′ > m(j′): repeat step

3. While doing so, whenever a type-θ worker with a history realization that occurs with

positive probability, would be rendered indifferent between j′ and one or more previously

treated firms, F, simultaneously decrease the pj of all j ∈ F∪ j′, to ensure that the type’s

Gittin indices are equal across all such firms, GIθ(j) = GIθ(j
′), while reallocating type-θ

workers across these firms to equalize demand and capacity. This continues until either

all pj = 0, or Dj′(v, p) = m(j′).19

18This step requires a technical adjustment when worker types have positive mass to avoid cycles, see the
appendix for the details.

19This characterization of equilibrium behavior is similar in spirit to the characterization of Azevedo and
Leshno (2016). There are two key differences. First, aggregate demand is not only a function of workers’
initial applications, but also must account for applications from workers who have previously applied and learned.
Second, my formulation allows for settings where firms are indifferent over a positive mass of workers—for instance,
when worker types are discrete.
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By design, the procedure begins with all workers applying as if they anticipated firms would

not be congested. In practice, this will cause certain firms to receive more applicants than

could be hired, due to the firms’ capacity constraints. Through continuously firing the worst

applicants, a firm decreases the number of applicants who expect to be hired. The decreased

rate of hire may cause workers to apply to other firms, but due to the gross substitutes condition,

other firms’ demands never decrease. Eventually, the firm reaches its capacity. The process then

repeats with another firm that is hiring more workers than it can support. However, any time

a worker is rendered indifferent between the current firm and a previously treated firm, that

worker then randomizes between the two firms so as to not violate the previously treated firm’s

capacity. This ensures that once a firm has met its capacity, it never again exceeds its capacity.

As such, the threshold adjustment process terminates in a finite number of iterations, one for

each firm.

Theorem 1 (Equilibrium Characterization). The threshold adjustment process culminates in

an equilibrium strategy profile in at most F steps.

Standard bandit techniques such as the Gittins index are normally only valid in decision

problems. Despite this, the characterization through hiring thresholds provides the necessary

step for the proof of Theorem 1. These thresholds reduce the best response problem into

worker-specific decision problems, each of which can then be solved through computation of

Gittins indices for a given set of thresholds. Furthermore, this procedure only requires a finite

number of iterations, making implementation simple.

The threshold adjustment process shares several features with the worker proposing Deferred

Acceptance algorithm. Workers begin by proposing to their ideal positions, then reconsider

as they are rejected. In settings where match values are not aligned, there may be multiple

equilibria. However, the equilibria can be ranked through a weak order in terms of worker and

firm preferences. Consider two equilibrium strategy profiles, σ and σ′, where the thresholds

induced by σ are greater than those induced by σ′, (v, p)(σ) ≥ (v, p)(σ′). Workers must prefer

the equilibrium under σ′ to σ, while firms prefer σ to σ′.

Proposition 4 (Threshold Ranking). If σ and σ′ are equilibrium strategy profiles, and

(v, p)(σ) ≥ (v, p)(σ′), then for all c ∈ C, U c(σ) ≤ U c(σ′), and for all j ∈ F , πj(σ) ≥ πj(σ′).

Importantly, if the expected utility under σ was above that under σ′, a class c worker

could deviate to her strategy under σ, be hired weakly more often, and receive greater utility.

Conversely, firms receive higher utility under σ because their thresholds are higher, implying a

higher quality for each worker hired.
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4.5 Efficiency and Long-Lived Behavior

In this section, I show how congestion can lead to inefficiently low levels of search. I then prove

that search converges to the efficient benchmark as δ converges to 1. In particular, outcomes

converge to the complete information outcome as δ converges to 1. However, in certain markets,

for any δ < 1, congestion always prevents a mass of workers from learning their type—for any

δ < 1, these workers would strictly benefit from learning their type at the outset.

In Example 2, two classes of workers decide whether to apply to fr, or take a guaranteed

payoff at fs. I show that in equilibrium, fr would prefer a certain class of workers to apply,

but those workers do not do so, due to the fear of rejection. Had a social planner determined

the acceptances of workers, total equilibrium payoff would be higher, and furthermore, fr would

have been better off. Subsequently, I show that through hiring headhunters, fr can attract these

workers, increasing its equilibrium profit. The safe firm has enough capacity to hire all workers,

and so hires all applicants in equilibrium. The following payoff matrix depicts the market.

Example 2 (Congestion Restricts Efficient Search).

Class-c1 Workers

Firms
m(fr) = 1/2 m(fs) = 1

m(θh) = 1/4 (3, 3) (2, 2)

m(θl) = 1/4 (1/2, 1/2) (2, 2)

Class-c2 Workers

Firms
m(fr) = 1/2 m(fs) = 1

m(θ) = 1/2 (2, 2) (2− ε, 2− ε)

There are two classes of workers, C = {c1, c2}. For δ ∈ (1/3, 1/2), congestion restricts the

willingness of c1 workers to search, resulting in an inefficient outcome.

In Example 2, class-c1 workers face uncertainty regarding their type, and would prefer to

apply to fr in the absence of congestion for sufficiently high δ. However, the presence of class-c2

workers means that a class-c1 type-θl worker is not hired at fr. For δ < 1/2, the only equilibrium

is the strategy profile where all class-c1 workers apply to fs, while all class-c2 workers apply to

fr. To see why, consider the payoff a class-c1 worker receives from deviating and applying to

fr. With probability 1/2, her type is θh. She receives 3 immediately from the match, and can

continue applying to fr indefinitely. Otherwise, her type is θl, causing fr to reject her, after
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which she applies to fs indefinitely. In expectation, her utility from deviation is 1/2 3
1−δ+1/2 2δ

1−δ ,

whereas if she had remained at fs, she would have received 2
1−δ . For δ < 1/2, this deviation is

not profitable, and so the original strategy profile is an equilibrium.

However, this equilibrium is inefficient for intermediate values of δ, namely when δ ∈
(1/3, 1/2). Suppose a centralized authority required fr to hire all applicants from class-c1.

Then, class-c1 workers who apply to fr receive 1/2 3
1−δ +1/2(1/2+ 2δ

1−δ ) and so apply to fr when

δ > 1/3. In the new equilibrium, all class-c1 workers would initially apply to fr, then type-θh

workers would continue applying to fr while type-θl workers would apply to fs. This implies

that fr receives a mass of (1− δ)( 1/4
1−δ + 1/4) = 1/4(2− δ) class-c1 applicants. Importantly, for

any δ ∈ (1/3, 1/2), 1/4(2 − δ) < 1/2, so fr does not exceed its capacity constraint. In equilib-

rium, the applications of class-c2 workers to fr would then adjust accordingly to render class-c2

workers indifferent between the two firms. From a utilitarian perspective, when δ ∈ (1/3, 1/2),

this equilibrium is more efficient than the previous one. Indeed, while the new total worker

utility is above 1/4 3
1−δ + 1/4(1/2 + 2δ

1−δ ) + 1/2(2 − ε). Note that class-c1 workers necessarily

receive more than 2 in utility, otherwise they would be better off applying to fs. Therefore, total

worker utility has increased from 2, the previous total worker utility, for sufficiently small values

of ε.20 Total welfare is increased through preventing congestion from limiting socially optimal

search.

Next, I investigate outcomes when workers are long-lived. As δ increases, the inefficiency

found in Example 2 is ameliorated. Indeed, for sufficiently high values of δ, workers are mo-

tivated to search for their maximal match values. In fact, the equilibrium outcome converges

to the complete information equilibrium outcome as workers become more patient, i.e., when δ

converges to 1. The inefficiencies present in the complete information environment carry over

to the case where workers are long-lived, and have incomplete preference information. When

workers do not know their type, they must also invest time to determine their top possible

match. However, workers may be unwilling to do so if δ is sufficiently small. In the limit, this

source of inefficiency converges to 0, as δ goes to 1. However, for any δ < 1, the inefficiency

always remains strictly positive in markets with oversubscription. Even as δ goes to 1, certain

worker types always benefit from learning their match values, i.e., there exists path dependence

despite vanishing time frictions. Path dependence arises due to the possibility that an unlucky

hiring realization can leave a worker uninformed regarding her type. Example 3, with a single

class of workers, C = 1, illustrates this form of path dependence.

20It is also worth noting that fr benefits from this change as well. Thus if fr could commit at the beginning of
each period to hiring all class-c1 workers, he would prefer to do so.
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Example 3 (Path Dependence).

Workers

Firms
m(fr) = 1/4 m(fs) = 1

m(θh) = 1/2 (3, 3) (2, 2)

m(θl) = 1/2 (1/2, 1/2) (2, 2)

Even when workers are long-lived, path dependence emerges in equilibrium.

The set of possible equilibrium strategy profiles can be categorized by the number of failed

applications to fr after which workers cease applying to fr, and instead apply to fs forever.

Naturally, the equilibrium strategy profile depends upon δ. When δ is low, workers are unwilling

to invest into learning, and all apply to fs. However, even when δ is high, any strategy profile

where all type-θh workers learn their type with arbitrarily high precision through repeated

applications to fr cannot be an equilibrium. To see why, consider the strategy profile where

all workers apply to fr repeatedly. Then, if all informed type-θh workers continued applying to

fr, each would be hired with probability 1/4
1/2 = 1/2. This cannot be an equilibrium, as type-

θh workers would deviate and apply to fs instead. Suppose informed type-θh workers would

randomize between fr and fs such that informed type-θh workers are indifferent between the

two firms, namely a total of 3/8 type-θh workers apply to fs so that the expected utility from fr

is 2. However, this would imply that uninformed workers expect a match value less than 2 from

applying to fr, because of the non-zero probability that they are type-θl. Uninformed workers

would then deviate and apply to fs. Therefore, all workers applying to fr indefinitely could not

have been an equilibrium.

When δ is sufficiently close to one, all workers will apply at least once to fr. Since workers

are not informed of their type when they are rejected, a portion of the workers that fail their

initial application will reapply to fr. The more workers that reapply, the lower an uninformed

worker’s expected payoff from fr will be, due to the competition type-θh workers face. As will

be shown, when δ < 1, in any equilibrium, uninformed workers with two failed applications to

fr never apply to fr.

Suppose it was optimal for an uninformed worker to apply more than twice to fr. Uninformed

workers with two failed applications place a lower weight on their probability of being type θh

than uninformed worker with zero or one failed application. As such, uninformed workers with

zero or one failed applications must strictly prefer to reapply to fr. Then, for δ sufficiently close

to 1, almost all workers will have applied at least twice to fr. Since each type-θh worker is hired
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with a minimum probability of 1/2, a minimum of 3/4 of type-θh workers will have been hired

at least once at fr and therefore know their type with certainty.

Informed type-θh workers must continue applying to fr, otherwise applying to fr while

uninformed could not have been profitable. Then, the average rate of hire for type-θh workers at

fr will be below 2/3, implying informed workers would prefer to apply to fs. This proves that

any strategy profile where uninformed workers apply to fr after more than one rejection cannot

be an equilibrium. Therefore, all uninformed workers with two failed applications apply to fs.

The reapplication rate will be such that workers with a single failed application are indifferent

between reapplying and applying to fs. In equilibrium, the probability a type-θh worker is hired

at fr, denoted by p, and the probability an uninformed worker with a single failed application to

fr reapplies to fr, denoted by x, must satisfy two equations. First, p must equal m(fr) divided

by the proportion of type-θh workers applying to fr:

p =
1/4

(1− δ)1/2(1 + δ
1−δp+ δx(1− p)(1 + p δ

1−δ ))
.

Let γh = 1/2(1−p)
1/2(1−p)+1/2 denote an uninformed worker’s posterior probability that she is of

type θh after a single rejection from fr. In equilibrium, uninformed workers with a single failed

application to fr must be indifferent between applying to fr and fs:

γhp(3 + δ3p
1−δ )

γhp
1−δ + (1− γhp)

= 2.

This completes the characterization of equilibrium for Example 3. As δ goes to 1, the

proportion of uninformed agents applying to fr is bounded above, since uninformed agents do

not apply to fr more than twice. However, as δ increases, there are less uninformed agents

present each period, and so the mass of agents applying to fs must increase in turn. In the

limit, the equilibrium outcome converges to that of the corresponding market with complete

information. The implications of Example 3 can be shown to generalize.

The equilibrium outcomes of aligned markets converge to the corresponding complete in-

formation outcomes as δ → 1. As δ increases, the opportunity cost of applying to firms with

uncertain match values decreases. However, when competition is present, the gain from learning

one’s type also decreases as more workers attempt to learn their type. As δ → 1, workers who

know they are in the class with the maximal match value must attempt to learn if they have

access to that match value. In any market, after a finite number of applications to firms, any

worker can learn about their type to arbitrary precision. Then, on a type by type basis, as
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δ → 1, outcomes converge to the corresponding outcomes in the complete information case.

A marketM with incomplete preference information can be translated to one with complete

preference information. For every worker class c, generate |c| individual classes, in the natural

manner. Each type θ belongs to a new class with a degenerate distribution of match values δθ

and mass mc(θ).

Lemma 5 (Equilibrium Outcomes with Long-Lived Workers). Suppose there are a finite number

of worker types, and match values are aligned. For each type-θ, as δ → 1, the equilibrium

probability with which type-θ workers apply to any given firm converges in distribution to the

probability class-θ workers apply to that firm in the corresponding complete information market.21

Despite the fact that the long-lived outcome converges to the complete information outcome,

there is a marked difference in worker’s information in the two economies. For instance, in

Example 3, a minimum of 1/4 type-θh workers will never learn their type in equilibrium, for any

δ < 1. Furthermore, in any equilibrium, a type-θh worker that was informed of her type upon

arriving would receive strictly higher expected utility than she would if she was uninformed.

Both features result directly from oversubscription. For a corresponding complete information

market, had the Top-Down algorithm ever encountered oversubscription, workers must apply

to firms that are not their most preferred firms with strictly positive probability. This occurs

in equilibrium only if workers are not perfectly informed, when δ < 1. Indeed, note that if all

workers knew their type, then all would apply to their top choice until the utility from that

firm was decreased to that of the next alternative. However, in such an equilibrium in which

learning a match value has no benefit, incoming workers would have no incentive to learn their

type. Applying to a firm and being rejected, yields a direct loss—not being hired in that given

period. By comparison, succeeding fails to change their expected utility, due to the indifference

condition. It follows that there must be path dependence in equilibrium for any market with

over-subscription.

Lemma 6 (Equilibrium Path Dependence). In any market with over-subscription, there exists

path dependence in equilibrium for any δ < 1.

Thus even though market outcomes look similar in complete information markets and mar-

kets with long-lived workers, the search patterns of workers vary drastically.

21Formally, for any ε > 0, there exists δ < 1 such that for any δ > δ, any type θ, and any firm j ∈ F , the
equilibrium probability a type-θ worker applies to j in any period of the equilibrium with δ is within ε of the
equilibrium probability that a type-θ worker applies to j in the corresponding complete information market.
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4.6 Tenure

On the individual level, the effects of incomplete preference information also naturally capture

several of the empirical facts mentioned in the introduction. One consistent trend in the data

is that higher earners or those who attended better schools are less likely to state that given

the chance they would have changed their major or the school they attend (Network 2017).

For instance, while 50% of US adults reported that they would change an important education

decision, that number drops to 40% when considering adults at top schools and further drops

to 23% when considering adults with incomes above $250,000. Lemma 7 shows that despite

having potentially higher outside options, those with higher current matches are more likely to

be satisfied with any given match. Let sθ denote the average stopping age for type-θ workers.

Definition (Stopping Age). Let ts(i) be the first period t such that Ai(t) = Ai(τ) for some

τ < t, then sθ ≡ Eθ[ts(i)|i is a type-θ worker].

Lemma 7 (High-Quality Workers Search Less). Suppose θh and θl are both types in class c, and

θh has uniformly higher match values than θl; that is, θjh ≥ θ
j
l ∀ f .

Then, in equilibrium, sθh ≤ sθl.

Lemma 7 is a natural consequence of the optimal search policy. Workers apply for the firm

with the maximal Gittins index. Since types θh and θl are members of the same class, c, type-θh

workers and type-θl workers would have identical Gittins indices across firms they have not yet

applied to. That is, their option value is identical across firms. However, type-θh workers always

realize a higher match value than type-θl workers. Therefore, if a type-θl worker is satisfied with

a firm j, then a type-θh worker would be satisfied with j as well. Therefore, whenever type-θl

workers are willing to stop searching at a given firm, type-θh workers would also stop searching

at that firm. When matches are permanent, this would manifest as type-θh workers reporting

higher levels of satisfaction with their current matches, in line with the Gallup report.

5 Policy Interventions

I proceed by evaluating the impact of two natural policy interventions designed for markets with

incomplete information. I show that congestion alters workers’ incentives to search, changing

equilibrium outcomes in markets with headhunters and unemployment benefits. While there are

many instruments that could be used to increase the quality of matches, I focus on headhunters

and unemployment benefits as they are commonly used tools in practice. Furthermore, it is

often claimed that these interventions increase workers’ propensity to search.
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5.1 Headhunters

A natural question is the impact of hidden information, are all workers affected equally by the

presence of uncertainty? When firms are congested, incomplete preference information benefits

workers with high match values. Under incomplete information, workers must apply to multiple

firms to find their best matches. This search comes at the cost of time and firings for workers

with low match values. Effectively, the ability of workers with low match values to apply to

other firms is restricted, leaving more spots open to other workers. Furthermore, even when

preferences are aligned, firms’ incentives may be in line with certain workers’ incentives but not

others.

Suppose firm fr hired a headhunter to target workers with high match values at firm fr.

The headhunter then could send out offers to desirable workers, informing them of their match

values at fr, (θfrw , θ
fr
f ). Workers that were not approached would be able to infer that they had

a low match value at firm fr. To formalize this extension, I define the market with revelation

at firm j as the market induced by all workers learning their match value at firm j.

Definition (Revelation at Firm j). Let market M = (F , C,m) be given.

Then, market Mj = (F ′, C′,m′) is induced by revelation at firm j if:

1. F ′ = F ,

2. C′ = ∪c∈C
{
∪x∈R+{θ|((θjw, θjf ), θ−j) = θ ∈ c}

}
,

3. m′c′(θ
′) = mc(θ

′), m′(f) = m(f).

Condition 2 splits each worker class c into kc worker classes, where each new class involves

a unique match value at firm j. Condition 3 simply requires that the mass function is propor-

tionally distributed across the new classes.

Returning to Example 2, in the market with revelation at firm fr, the equilibrium is simple:

all type-θh workers apply to fr, while class-c2 workers randomize between the two firms and

type-θl workers apply to fs. Firm fr benefits from this change in outcome, as it receives higher

profit than in the original equilibrium. However, revealing information does not always benefit

workers with high match values at that firm. Example 4 illustrates how headhunters can benefit

workers with low match values to the detriment of other workers.
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Example 4 (Revelation).

Workers

Firms
m(fr) = 1/4 m(fs) = 1/2

m(θh) = 1/2 (3, 3) (2, 2)

m(θl) = 1/2 (1/2, 1/2) (2, 2)

Revealing information at fr benefits type-θl workers through inducing them to avoid fr. Type-

θh workers are harmed through increasing competition at fs.

When δ = 1/2, equilibrium payoffs for workers of type θh and θl are 9
4 and 5

4 , respectively.

The equilibrium strategy profile is simple. Workers randomize between the two firms when

uninformed, and apply to fr if type θh or to fs if rejected initially from fr. In equilibrium, when

type-θl workers are rejected after applying to fr, the mass of workers that can apply to fs is

reduced. The low capacity of fr requires type-θh workers to apply to fs in equilibrium, and so

they benefit from the rejections suffered by type-θl workers.

Now considerMr. Type-θl workers know they will never be hired by fr. As such, all type-θl

workers apply to fs. In doing so, they decrease the hiring probability at fs. This weakens the

outside option for type-θh workers who previously benefited from access to fs, but now have a

reduced safety valve for congestion at fr. In market Mr, both types’ equilibrium payoffs are
7
4 . Type-θl workers are made better off by the revelation, while type-θh workers are harmed. In

this stylized example, complete information harms type-θh workers relative to type-θl workers

because the information itself provides no aggregate increase in efficiency.

In general, firm j hiring a headhunter has two effects; a sorting effect, where workers with

high match values at j can immediately apply to j, and a congestion effect, where workers with

low match values at j apply to safer options. When j is sufficiently congested, the former effect

vanishes, leaving only the latter, benefiting workers with low match values at j on the whole. If

j is not sufficiently congested, the result of this policy is ambiguous. Proposition 5 characterizes

these two effects, and provides a sufficient condition for less competitive types to be better off

than more competitive types.

Two definitions will be useful. First, a market is congested if each firm fully utilizes its

capacity in equilibrium.

Definition (Congestion). Firm j is congested, if in equilibrium, Dj = m(j). The market is

congested if every firm is congested.
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Second, to economize on notation, let U jM(θ) denote type-θ workers’ payoff from firm j in

market M:

U jM(θ) = EM

[ ∞∑
t=0

δt1w(t)=jθ
j
w

]

Proposition 5 (Impact of Headhunters). Suppose M is congested and θh and θl are members

of the same class, but θjh > θjl .

1. The increase in type-θh workers’ matches with firm j is more than type-θl worker’s increase:

U jMj
(θh)− U jM(θh) ≥ U jMj

(θl)− U jM(θl).

2. If m(θjh) > m(j) and |C| = 1, type-θh is harmed relative to type-θl:

UMj (θh)− UM(θh) ≤ UMj (θl)− UM(θl).

Part 1 of Proposition 5 shows that workers with high match values at firm j receive higher

net utility from firm j. Part 2, whose condition was satisfied in Example 4, states that on

net, a worker with high match values at firm j gains less from headhunters when j is heavily

congested. There are two forces behind the second result: the nature of the outside option and

the independence of match values across firms. In decentralized markets, the cost of a poor

match is embedded in the opportunity cost. A centralized market, wherein a rejected worker

could immediately apply to another firm within the same period, would eliminate this force.

In such a setting, this result would reverse, headhunters would solely benefit workers with high

match values at j. Similarly, if types were correlated across firms, that is if θjh > θjl implied

θj
′

h > θj
′

l , then the competition effect would vanish. This follows because θh would not be effected

by the increased level of congestion at fs.

5.2 Unemployment Benefits in Congested Markets

A common intuition holds that increasing unemployment benefits further encourages search,

because it reduces the loss from rejection. In turn, unemployment benefits could be expected to

improve equilibrium efficiency as workers and firms are better matched. θ∅w has a straightforward

interpretation in this context, θ∅w is the benefit for rejected workers, or the “unemployment

benefits.” This section considers the impact when the utility from being rejected in a given

period is positive. Example 5 shows that unemployment benefits can have a nuanced effect on
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equilibrium efficiency. Negative learning, a worker’s incentive to learn about a less desirable

firm, is suppressed by unemployment benefits.

Example 5 (Unemployment Benefits).

Workers

Firms
m(fr) = 1/4 m(fs) = 1/4

m(θh) = 1/2 (3, 3) (3, 3)

m(θl) = 1/2 (1, 1) (3, 3)

As depicted in Figure S1, increasing unemployment benefits when there is an agreed upon

top firm can decrease equilibrium welfare.

Figure S1: The x-axis represents δ, the probability a worker does not retire. The blue line shows the
proportion of uninformed workers that apply to fr when θ∅w = 0. The yellow line shows the proportion

of uninformed workers that apply to fr when θ∅w = 1.

Safety nets can reduce the overall efficiency of equilibrium. Indeed, when the rate of applica-

tions for uninformed workers to fr drops below 1/4 in Example 5, the total equilibrium utility,

net of θ∅w , is reduced. The key feature in Example 5 is that fs is commonly known to be more

attractive than fr. Prior to the introduction of unemployment benefits, workers refrain from

applying to fs due to the high level of competition and resulting low probability of acceptance.

As θ∅w increases, the loss from rejection decreases. The lowered loss incentivizes more workers to

apply to fs, in order to equilibriate the probability of rejection. However, this reduces equilib-

rium efficiency when δ is low. The increase in applicants to fs fails to improve matching, while

too few type-θh workers are hired by fr.
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6 Transferable Utility

I show transferable utility can be simply incorporated into the transient matching model. Fur-

thermore, doing so does not cause worker demand to violate gross substitutes, and therefore

does not change the qualitative results. I consider a competitive equilibrium environment where

firms strategically choose wages, before workers apply to firms.

6.1 Competitive Equilibrium

In a competitive equilibrium, firms choose wages based on observables—match values and

classes—to maximize profits. Formally, I consider a separate “wage game,” which occurs before

the market resolves in period 0. In the wage game, all firms simultaneously announce a payment

function φj : C × R+ → R, denoting the payment from firm j to a worker conditional on that

worker’s class, c, and firm match value, θjf . Importantly, workers of a given class and equal

match values must receive the same payment, even if their type differs.

To maintain the connection with the previous sections, I assume the prenumeration match

values remain unchanged. If a class-c type-θ worker matches to firm j, the two agents receive

θjw and θjf , respectively, in addition to the transfer. That is, they receive θjw + φj(c, θ) and

θjf − φj(c, θ). After period 0, wages remain fixed, and workers apply to firms as before, with

match values altered accordingly.

Importantly, firm j evaluates his profit through his per-period expected equilibrium profit in

the market game, denoted by πj({φf}f∈F ). This is in contrast to the previous sections, where

firms evaluated profits through their discounted stream. To see why this is necessary, recall

the previous discussion of alignment. Alignment was used to rule out the possibility of rejection

cycles, wherein a firm might reject one worker in order to receive an application from a preferred

worker. Here, with arbitrary transferable utility, there is no assurance that the resulting market

will be aligned. To retain the focus on workers’ search strategies, firms are required to be myopic

in evaluating utility.

I assume firms are myopic—when hiring, firms maximize profit in the current period—and

firms randomize when indifferent. This rules out firms incentivizing more or less experimentation

through selectively hiring certain worker classes. When each firm is made up of many small

teams, each of which must make a hiring decision, this assumption is natural. Each individual

team has a small impact on the overall matching and so focuses on maximizing their own utility.

Alternatively, if each “firm” were a unique industry comprised of many firms, similar logic would

imply that each firm optimizes by maximizing the current period utility.

Assumption (Myopic Firms). Firms maximize current period profit. Furthermore, if a firm

is indifferent among a subset of its applicants, and cannot hire the entire subset, it uniformly
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randomizes over that subset.

Wages are required to satisfy a limited liability condition—the size of any transfer cannot

exceed the gain from the matching for either party:

Assumption (Limited Liability).

−θjw ≤ φj(θ) ≤ θ
j
f

I proceed by defining competitive equilibrium in the standard manner. A profile of payment

functions constitutes a competitive equilibrium if no firm can change his payment function to

increase his profit:

Definition (Competitive Equilibrium). A profile of payment functions {φj}j∈F constitutes a

competitive equilibrium if for all j, φ:

πj ({φk}k∈F ) ≥ πj
(
φ, {φj′}j′ 6=j

)
This equilibrium characterization implicitly prohibits dynamic punishments. Allowing for

dynamic punishments would enable a folk-theorem style argument which could rationalize all

wages when firms are sufficiently patient.

Importantly, for any profile of payment functions, the resulting market is effectively a new

market with non-transferable utility. Then, workers still evaluate firms as if they were endoge-

nous bandits, albeit with differing rewards. This implies that aggregate demand satisfies gross

substitutes, and therefore an equilibrium can be characterized using the algorithm in Theorem

1.

Proposition 6 (Wages Satisfies Gross Substitutes). For any profile of wages {φj}j∈F , aggregate

demand satisfies gross substitutes.

6.2 Non-Existence of Competitive Equilibrium

Even in such a simple environment, existence of competitive equilibria is not guaranteed. Two

issues arise: a type’s demand for a firm is not necessarily continuous in wage, as workers can

apply multiple times; and firms cannot condition wages on worker’s outside options, as they do

not observe worker’s types.
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Example 6 (Competitive Equilibria Need Not Exist).

Workers

Firms
m(fr) = 1/2 m(fs) = 2

m(θh) = 1 (3, 3) (2, 2)

m(θl) = 1 (1/2, 1/2) (2, 2)

First, note that the minimum proportion of workers fs can hire is given by the strategy profile

where all workers initially apply to fr, then type-θl workers subsequently apply to fs. Note that

if a type-θl worker is willing to remain at fr after learning her type, then all type-θh workers

must strictly prefer to remain at fr. Furthermore, this implies that an uninformed worker must

strictly prefer to work at fr. However, then the mass of workers applying to fr is greater than

1/2, so type-θl workers are hired with probability 0. Type-θl workers would then prefer to apply

to fs, unless fs’s wage is exactly −2, in which case type-θl workers are indifferent. By standard

bargaining arguments, this implies that φs = −2 and all type-θl workers apply to fs. Then, a

lower bound for πs in equilibrium is given by 1/2δ · 4 = 2δ.

To show no competitive equilibrium exists in Example 6, suppose for contradiction a com-

petitive equilibrium exists. There are three possible categories of strategies for workers. 1) All

workers apply to fs forever; 2) all workers initially apply to fr, then type-θh workers remain at

fr and type-θl workers migrate to fs forever; and 3) workers randomize between the previous

two options.

First, suppose in the competitive equilibrium, all workers applied to fs forever. Then, fr

would hire no workers, and so receive zero profit. fr would deviate and set payment for θh equal

to 6 − ε, since this would generate positive profit for fr. However, fs would never offer a wage

higher than 2δ = (2 − w)2 or w = 2(1 − δ/2) in equilibrium, as otherwise fs could revert to a

wage of −2. Since 2(1− δ/2) < 6 at least one of fr or fs must have a profitable deviation.

Next, suppose all workers initially apply to fr. Then, fs must set its wage to −2 as listed

above. However, if fr’s wage was above −3, fr could deviate to a wage of −3 + ε while still

attracting type-θh workers. This implies fs could set a wage just above φr, a marginal increase

in payment that earns fs a strict increase in workers of 1− 1/2δ.

Last, workers randomized between the two firms. Then, workers are exactly indifferent

between the two firms. However, a firm could increase its wage marginally to capture all workers.

This generates a strict increase in profit, unless that firm was earning zero profit from each

worker. For fr this implies φr = 3, while for fs this implies φs = 2. However, then fs could

deviate to φs = −2 as detailed above.

The driving force behind the non-existence argument is that firms cannot distinguish workers
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with different outside options. This reduction in the dimension of possible wages restricts the

ability to equilibriate demand and supply.22

6.3 Resumes

The non-existence in the previous example can be resolved by the inclusion of resumes. In this

context, a resume allows a worker to prove she had been previously hired by a separate firm, in

return for higher wages. Resumes allow for wages to be conditioned not only upon the direct

match value, but also upon a worker’s previous history. Formally, a resume-dependent payment

function is a payment function defined on a larger domain φj : C × R+ × {Aji (τ)}tτ=0 → R.

To see how the inclusion of resumes generates a competitive equilibrium in Example 6, note

that now fs could choose a wage that incorporates the worker’s outside option. The following

wages form equilibrium for sufficiently high δ: type-θl workers receive 0 from fr and −2 from

fs, while type-θh workers receive 1 from fr and 2 from fs upon providing a resume and −2

otherwise. In equilibrium, all workers apply to fr initially, and type-θl workers transition to

working at fs.

The equilibrium non-existence arose due to the requirement that firms treat workers of a sin-

gle class with equal match values identically. Through introducing resumes, workers could prove

that their outside options were distinct. Thus, resumes play an important role in information

transmission.

7 Discussion

This paper develops a framework for analyzing transient matching when workers learn through

experimentation. Firm capacity constraints force workers to anticipate other workers’ applica-

tion decisions. I show that, firms can be evaluated as endogenous bandits. Once firms’ hiring

decisions are described as thresholds, techniques from the multi-armed bandit literature allow for

a simple description of the optimal worker policy. Importantly, aggregate demand satisfies the

gross substitutes condition, which enables the characterization of equilibrium. Workers’ search

patterns match data from labor markets, high-quality workers report higher satisfaction—despite

not having better information.

I show that the nature of both learning and competition are critical to understanding the

impact of policy interventions. Commonly used interventions, such as hiring headhunters or

22It is worth noting that while on the surface this may appear similar to issues such as the non-existence that
arises from adverse selection in Rothschild and Stiglitz (1978), the non-existence here comes from a different
source. In their work, non-existence results from free firm entry, as firms currently in the market are harmed
by entry. In transient markets, the firms already present in the market face incentives to change their pricing
structures, in order to manipulate the learning behavior of workers in the market.
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increasing unemployment benefits, may generate unintended effects in congested markets. For

instance, headhunters may redistribute the benefits from matching, while increasing unemploy-

ment benefits can intensify competition.

The results also imply careful consideration should be taken before changing centralized

mechanisms. Such mechanisms often feature decentralized aftermarkets, where the incoming

information from the original centralized market can radically shift the final outcome. This

paper provides a first step towards better understanding the effects changes of mechanism rules

can have on the aftermarkets of centralized mechanisms.
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A Proofs

I begin by showing that standard results from the operations literature apply when firms hire

all applicants. Lemma 8 provides the basis for the index-related arguments in the rest of the

appendix.

Lemma 8. Let σ be an equilibrium, such that, in any subgame, all firms hire all applicants each

period. In any period, each worker i applies to some j ∈ arg maxj GI
σ
i (j, hit).

Proof of Lemma 8

This proof follows directly from Theorem 2.1 of (Gittins, Glazebrook, and Weber 2011) which

states:

Theorem 2.1: A policy for a simple family of alternative bandit processes is optimal if it is

an index policy with respect to the Gittins index of each bandit process.

Then, it must be shown that the set of firms acts as a simple family of alternative bandit

processes for each worker. First, since firms hire all applicants, each worker i faces a fixed

decision problem for any strategy profile σ, independent of the other workers’ strategies. For

any possible worker strategy profile, each worker is always hired, no matter which firm she

applies to. As such, the payoff for a type-θ worker from applying to firm j, is simply θjw in any

equilibrium.

Each firm is then a bandit process that can either be activated or frozen. A frozen firm pro-

vides no payoff, while an activated firm provides θjw. Each worker must activate exactly one firm

each period. The independence of firm match values—conditional on a worker’s class—implies

that the set of firms is a simple family of alternative bandit processes. Theorem 2.1 from Gittins,

Glazebrook, and Weber (ibid.) then applies, and the result follows. �

Proof of Lemma 1

I begin by describing the Top-Down algorithm in detail. For any complete-information

market MI = (F , C,m), the Top-Down algorithm proceeds as follows:

Top-Down Algorithm:

Let E = F ∪ C be the set of agents present in the market.

1. Find the largest worker-firm match value: (c∗, j∗) = arg maxc,j∈E θ
j
c , the finiteness of C

implies this is well-defined.

2. Find class-c∗’s second-highest match value: j2 = arg maxj 6=j∗ θ
j
c∗ .

3. Match c∗ to j∗, which leads to one of two possible outcomes:
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(a) Undersubscription—When all class-c∗ workers apply to j∗, j∗ is still preferred by

class-c∗ workers relative to j2:
m(j∗)

m(c∗)
θj
∗

c∗ ≥ θ
j2
c∗

i. All class-c∗ workers apply to j∗ forever.

ii. Firm j∗’s capacity is reduced by the mass of applicants: m(j∗) = max{0,m(j∗)−
m(c∗).

iii. Reduce to the submarket without class-c∗, E = E \ {c∗}. Remove j∗ from the

market as well if m(j∗) = 0.

(b) Oversubscription—When too many class-c∗ workers apply to j∗, j2 becomes prefer-

able:
m(j∗)

m(c∗)
θj
∗

c∗ < θj2c∗

i. c∗ randomizes between j∗ and j2 to generate indifference: c∗ applies to j∗ with

probability m(j∗)
θj
∗
i∗

θ
j2
c∗

. The remaining probability, 1−m(j∗)
θj
∗
i∗

θ
j2
c∗

, will be accounted

for in a future step.

ii. Reduce to the submarket without j∗, E = E \ {j∗}.

4. In the new submarket E , again select the highest match value: (c∗, j∗) = arg maxc,j∈E θ
j
c .

(a) If j∗ was not previously selected, repeat steps 2 and 3.

(b) Otherwise, if c∗ was previously oversubscribed:

i. The proportion of c∗ applying to the original firm must be increased to keep c∗’s

payoffs from both firms equal.

ii. Redistribute workers between the two (or more) firms keeping c∗’s payoff from

each firm equal, continuing until all of c∗ has been allocated, or the payoffs from

each firm are equal to those of the next top choice of c∗.

(c) If j∗ was previously selected as j2, increase the proportion of the previous class-c∗

applying to the previous j∗ to equalize the previous c∗’s utility between the previous

j∗ and the current j∗.

5. Repeat the above steps until either E ⊂ C or E ⊂ F

6. Any remaining workers apply to any firm and are rejected. All remaining firms operate

below capacity.

Now I prove the claim. Suppose there exists a strategy profile σ′ whose outcome does not

coincide with the Top-Down algorithm. The Top-Down can be used to construct a strategy
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profile σ. Because σ′ and σ differ in their outcome, there is a minimum k such that in the

kth iteration, there exists a class c, such that c’s strategy profile differs between σ and σ′. By

construction, this implies that some member of class c has payoff under σ′ below its payoff under

σ. Furthermore, all matches corresponding to higher match values are equivalent between σ and

σ′ by construction. Then, under σ′, a class c worker could deviate to their firm under σ and

receive higher expected utility every period. Therefore, σ′ could not have been an equilibrium.

�

Proof of Proposition 1

Consider a firm j that is hiring below capacity, namely j rejects applicants while m(Aj) <

m(j). Importantly, rejecting some such applicant, i, has two impacts that could potentially

benefit j: the rejection could cause i to re-apply to j in a later period, and the rejection could

trigger a rejection cycle wherein a more preferable worker i′ is rejected by another firm causing

i′ to apply to j.

Hiring i immediately front-loads the match value from i, avoiding the loss from i possibly

retiring before returning to j. Note that it cannot be the case that i eventually returns to j and

applies more times to j than i would if j had accepted immediately. Eventually i’s information

sets under the original strategy and the deviation must coincide, at which point the Markovian

nature of i’s strategy forces i to apply to the same firm under both strategy profiles. Then, it

follows that j’s payoff from that point forward is unchanged. Since i was accepted by j at most

once before i’s information converged under the original strategy profile, j strictly benefits from

the deviation.

By assumption, match values are aligned. It is known that aligned markets have no rejection

cycles (Voorneveld and Norde 1997). Namely, it cannot be the case that θj
′

i > θj
′

i′ , θ
j
i > θj

′

i , and

θj
′

i′ > θji′ . Then, j can not benefit from rejecting i in an attempt to attract other workers. Since

j cannot benefit regardless from rejecting i, j must accept as many applicants as possible in

equilibrium.

Last, if j is congested, then it must have excess applications with match values equal to its

lowest match value. In order to accept a high ranked applicant, j would then need to reject one

of its lowest ranked applicant. However, even rejecting that lowest ranked applicant dissuades

her from applying in future periods, another worker with equivalent match value will be available

to replace it. Then, the previous arguments imply that j has a profitable deviation.

�

Proof of Lemma 2

A Markovian strategy for firm j, is a mapping from the types of workers, aj , to acceptances.
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Notably, because worker’s strategies are Markovian, worker’s payoff-relevant information is sum-

marized by her belief regarding her type. For a given worker j, and private history hjt , let j’s

posterior regarding her type be given by p ∈ ∆Θ. Then, the payoff-relevant state space is a

distribution over p, Ψ.

Consider the Markov chain over Ψ. Workers’ applications follow the same initial distribution

over applications. Furthermore, there are a finite number of firms, and as such workers must

eventually converge in belief, independent of the order in which they apply to firms, implying

that their final applications are a fixed quantity. Then, there exists a subset V ⊂ Ψ, such that

V is irreducible. Furthermore, because new workers enter the market every period, the Markov

chain is aperiodic. Then, by the Steady State Theorem, there exists a steady state. �

Proof of Lemma 3

Suppose for worker i, under an arbitrary strategy profile σ, for some firm j, GIσi (j, hit) = x.

I show that this value of GIσi (j, hit) is achieved by the strategy described in the statement of

the lemma: if the realization of φji is above x set τ = ∞, otherwise set τ = 1. If exactly x

was realized, any stopping time yields an equivalent outcome. Assume throughout that the

realization is given by y > x. It will be helpful to refer to the value of the stopping time problem

that characterizes GIσi (j, hit). I let gi(f, hit, τ) be the value of the stopping time problem that

characterizes GIσi (j, hit), given a possibly suboptimal stopping time, τ . Formally:

gi(f, hit, τ) ≡
Ei
[∑τ

t=1 δ
tφji

]
E [
∑τ

t=1 δ
t]

I use induction to show that, for any stopping time τ <∞, gi(f, hit, τ + 1) > gi(f, hit, τ).

To begin, I consider the case where τ = 1:

Let x = p/q where q > 0, p and q are not necessarily integers, no rationality assumption is

made.

p+ δy

q + δ
> p/q

p+ δy >
p(q + δ)

q

δqy > δp

qy > p

y > p/q = x

Next, suppose that the claim holds for τ ∈ {1, 2, . . . , k}. A similar computation implies the

inductive step also holds for τ + 1.
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p+ δk+1y

q + δk+1
> p/q

=⇒ y > p/q = x

Then, for any k, p+δky
q+δk

> p/q, therefore giσ(f, hit, τ) = GIσi (j, hit) only if τ ∈ {1,∞}.
Conversely, the argument also shows that when y < x, setting τ = 1 is optimal.

Then, the claim is proven, GIσi (j, hit) is characterized by the strategy described in the state-

ment of the lemma. �

Before proving Proposition 2, I prove a useful lemma. Strict dynamic preferences implies

that two equilibrium strategy profiles that induce different outcomes must also generate different

hiring thresholds.

Lemma 9. Under strict dynamic preferences, if σ and σ′ generate distinct equilibrium outcomes,

then there must exist some firm j whose hiring threshold under σ differs from his hiring threshold

under σ′.

Proof of Lemma 9

Suppose not. That is, σ and σ′ induce different outcomes, but every firm has identical

thresholds under σ and σ′. Then, every worker faces identical Gittins indices under σ and σ′,

at every firm, under any informational partition. In particular, since σ and σ′ have distinct

outcomes, there exists a type θ and history hit such that type-θ workers with history hit make

different choices under σ and σ′, and type-θ workers are hired with positive probability. Without

loss of generality, suppose type-θ workers apply for firm j with greater probability under σ than

under σ′. Similarly, type-θ workers must apply to another firm j′ with greater probability under

σ′ than σ. Since forward induction policies are optimal, this implies that GIσi (j) = GIσ
′

i (j′).

Then, strict dynamic preferences implies that type-θ workers must be hired with intermediate

probability at either firm j or firm j′. Namely, the threshold for either j or j′ is set at a match

value of θjf or θj
′

f .

First, suppose type-θ workers were hired with intermediate probability at j. As type-θ work-

ers leave j, if no other workers start applying to j, the probability of being hired increases for

remaining type-θ workers due to the reduced competition, thereby increasing GIσ
′

θ (j) contra-

dicting the claim. To prevent this, there must be another type θ′, whose workers apply to firm

j in increased numbers. However, type-θ′ workers willingness to do so implies that there exists

another firm j′′ such that GIσθ′(j) = GIσθ′(j
′′). Again, by assumption 1 workers of this type

must be hired with intermediate probability at one of these firms. Since type-θ workers were
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hired with intermediate probability at firm j, type-θ′ workers must be hired with intermediate

probability at firm j′′. Repeating this line of logic implies that there exists a cycle of workers,

each facing equal Gittins indices at least two firms and hired with intermediate probability at

one such firm. However, inherently the total mass of workers is fixed, for every mass of workers

that leave a firm, an equal mass must take their place. But marginal workers have a probability

less than 1 of being hired, while those taking their place do not. Then, such a cycle cannot keep

the total amount of workers hired at involved firms equal. Therefore, the thresholds at those

firms must either increase or decrease, contradicting the original assumption. �

Proof of Proposition 2

Suppose σ and σ′ are both equilibria, with distinct outcomes. Lemma 9 then implies that

there exists some firm j such that firm j’s threshold under σ is distinct from its threshold under

σ′.

Without loss of generality, suppose firm j’s threshold is higher under σ than under σ′. Then,

consider worker i, where i previously applied to a firm j′ but now applies to j. A positive

mass of such workers must exist, otherwise j’s threshold could not have increased. One of

two cases must have occurred to generate this change in application, either worker i’s original

firm’s Gittins index decreased, GIσ
′

i (j′, hit) < GIσi (j′, hit), or worker i’s Gittin index at their new

firm increased, GIσ
′

i (j, hit) > GIσi (j, hit). However, GIσ
′

i (j, hit) cannot be larger than GIσi (j, hit)

because firm j’s threshold has increased, therefore every worker has a weakly lower firm j Gittins

index than before. Then, GIσ
′

i (j′, hit) < GIσi (j′, hit), implying that the threshold at firm j′ has

increased.

Then, the same line of logic as before implies that there exists another non-zero mass of

workers applying to firm j′, and their original firm must have increased its hiring thresholds.

Since there are a finite number of firms, eventually this chain must return to a firm it has

previously visited, generating a set of firms with higher thresholds under σ′ relative to σ.

Consider the implications of such a set, it cannot be the case that a smaller total of workers

are being hired at these firms under σ, otherwise thresholds would fall accordingly. Furthermore,

since thresholds are higher, the total utility of hired workers must be higher under σ relative to

σ′. Then, there must be at least one worker with strictly greater utility than before. Then, such

a worker could have profitably deviated in σ′ to its strategy under σ. However, this contradicts

the fact that σ′ was an equilibrium. �

Proof of Lemma 4

Lemma 8 showed that in equilibrium workers must apply to a firm with maximal Gittins

index when capacities were unconstrained. Repeating the proof of Lemma 8, updating the
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rewards from firm j, replacing θjw with ψjθ(v, p) immediately implies that the set of capacity

constrained firms is still a simple family of multi-armed bandits. The result follows. �

Proof of Proposition 3

I begin by proving a stronger claim for individual demand. I show that when whenever any

type-θ worker faces a multi-armed bandit problem, and type-θ worker’s Gittins index for any

firm j, GIθ(j), is decreasing in j’s threshold, (vj , pj), type-θ’s demand will be decreasing in j’s

threshold as well. Gross substitutes is satisfied in multi-armed bandit problems because the

Gittins index for each individual firm is only a function of the rewards from that firm. Then,

increasing the threshold of firm j2 cannot affect the Gittins index of firm j1. Furthermore, the

realized demand over each firm is weakly increasing in that firm’s Gittins index. As such, raising

the thresholds of a set of firms, decreases the Gittins indices of those firms, but fails to change

the Gittins indices of other firms. Then, applications to the original set of firms must weakly

decrease.

Theorem 2 (Bandits imply Gross Substitutes). Suppose for all θ, type-θ workers face a simple

multi-armed bandit problem, and for any firm j, GIθ(j, h
i
t) is decreasing in (vj , pj). Then, type-

θ’s demand satisfies gross substitutes.

Proof of Theorem 2

Lemma 8 implies that, when firms hire all workers, workers apply to a firm with maximal

Gittins index each period. However, for any firm j and threshold (vj , pj), an auxiliary firm j′

can be defined, where type-θ’s match values are given by ψθ(vj , pj). Then, j′ hires all workers,

and so Lemma 8 applies.

Then, let F be a set of firms, F ⊂ F , and (v, p), (v′, p′) be two vectors of thresholds, such that

(vj , pj) = (v′j , p
′
j) for j ∈ F and (vj , pj) ≥ (v′j , p

′
j) otherwise. Because the thresholds for firms

in F remain unchanged, their Gittins indices are also equal under (v, p) and (v′, p′). However,

the Gittins indices for firms outside of F, must be weakly lower than before under (v, p). Then,

the total demand for firms in F must weakly increase, as the corresponding Gittins indices are

always higher in relative terms.

�

Returning to the proof of Proposition 3, it must be shown that for a given set of thresh-

olds, aggregating across workers preserves changes in demand. This immediately follows

from monotonicity of integration. By the definition of aggregate demand, for a given firm

j ∈ F, Dj(v, p) =
∫
θD

θ
j (v, p)dθ. Then, if for all θ, Dθ

j (v, p) ≥ Dθ
j (v
′, p′), it must be that

Dj(v, p) ≥ Dj(v
′, p′). As such, when every individual type’s demand satisfies gross substitutes,

so must aggregate demand. The result follows. �
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Before addressing Theorem 1, I prove the following helpful lemma:

Lemma 10. Suppose after some private history, hθt , which occurs with positive probability for

type-θ workers; type-θ applies to j with positive probability, vj = θj, and GIθ(j, h
θ
t ) = GIθ(j

′, hθt ).

Then, a marginal decrease in pj yields a discontinuous decrease in Dj.

Proof of Lemma 10

Forward induction implies a form of independence of irrelevant alternatives, reducing GIθ(j)

below GIθ(j
′) only affects type-θ workers’ choices regarding whether to apply to j or j′. In

particular, there is exactly one change, type-θ workers that would have applied to j apply to j′

instead. Afterwards, type-θ workers will either remain at j′ or apply next to j.

Even if type-θ workers later return to j, a period by period comparison shows that type-θ

workers’ demand for j has decreased. In the first period, the number applying to j is zero,

since all have applied to j′. Then, type-θ workers either remain at j′ forever, in which case the

claim follows, or they proceed by applying to j. However, even should type-θ workers apply to

j, upon having applied to both firms, the impact of decreasing GIθ(j) has washed out. Type-θ

workers now have applied to both firms. Subsequently, type-θ workers will be weakly more likely

to apply to firm j′. Last, since δ < 1 front loading applications to firm j′ decreases the total

number of type-θ workers applying to firm j. �

Proof of Theorem 1

I begin by describing the threshold adjustment process in more detail:

Threshold adjustment process:

1. Begin by setting all thresholds to (vj , pj) = (0, 1).

2. Determine the aggregate demand vector, D.

3. If no firms are hiring beyond their capacities; ∀j,Dj ≤ m(j), terminate.

4. Otherwise, take an arbitrary firm j that is over capacity, and impose its capacity contin-

uously:

(a) Select the worst match quality θj for firm j that is hired with positive probability.

Let vj = min{θ|θj≥vj} θ
j and let c be the class of θ ∈ arg min{θ|θ≥vj} θ

j .

(b) Continuously decrease θ’s hire probability at j, pj → 0.

(c) Three events could result:

i. Lowering pj equates demand and capacity, Dj = m(j), continue to step 5.

ii. Type-vj workers are never hired, pj = 0, return to step 4a and repeat.
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iii. Lowering pj equalizes c’s Gittins indices at j and at least one another firm j′,

GIi(j) = GIi(j
′). Increase type-θ workers’ demand for j′ at this information set

while lowering their demand for j until the demand for j is 0 or Dj = m(j).

Proceed to step 4a or 5 accordingly.

5. Again select a firm j such that Dj > m(j), if no such j exists, terminate. Otherwise,

repeat the process in step 4 with the following change. In step 4(c)iii, if j′ is a firm that

was not selected in a previous step, then repeat step 4(c)iii without alteration. However,

if j′ was selected in a previous step, the above method leads to cycles. To see why, note

that Lemma 10 implies any non-zero decrease in pj may cause demand for j and j′ to

oscillate. Modify the procedure by selecting all firms j′ with equal Gittins indices that

were previously selected, and simultaneously lower all corresponding pj′s along with pj in

proportions such that GIi(j) = GIi(j
′)∀j′ while also reallocating demand between the set

of firms accordingly such that no firm in the set is left with excess capacity.

This process must end either through all selected firms equating demand and capacity or

with some pf̃ = 0. In the first event, return to the beginning of step 5, in the latter event,

step 4(c)iii can be resumed as normal.

By design, the threshold adjustment process always increases the thresholds of various firms.

Then, the gross substitutes condition implies that unselected firms never have their demand

decrease under the process. Furthermore, step 5 ensures that previously selected firms never

face over-demand. Firm j’s step only concludes when Dj = m(j). The only unselected firms

are those such that Dj(0, 1) ≤ m(j). Then, the procedure must conclude within a finite number

of iterations, at most one per firm. Upon termination, all firms have demand equal to supply.

By construction, worker incentives are incorporated through the Gittins index and threshold

characterization, therefore the procedure finds an equilibrium, concluding the argument. �

It is worth emphasizing that the threshold adjustment process converges due to the optimal-

ity of forward induction. In particular, had type values been correlated between firms, increasing

the threshold of one firm could decrease demand at another firm. Alternatively phrased, inde-

pendence of types is a key component of gross substitutes. Gross substitutes requires that the

demand for a firm is weakly increasing in the prices (thresholds) of other firms. Gross sub-

stitutes proves to be a weaker sufficient condition in order for firm thresholds to characterize

equilibrium. Notably, as shown in Appendix section B.1, a model of gradual learning—where

instead of receiving θjw from a match, a worker received a noisy signal of θjw—would also converge

to equilibrium under the threshold adjustment process as the gross substitutes condition would

still be satisfied.
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Proof of Lemma 5

To prove the claim, I first characterize the equilibrium strategy profile in the limit as δ → 1.

I then show that the resulting outcome coincides with the equilibrium outcome in the market

with complete information. As δ → 1, the maximum possible match value must be fully utilized;

either the associated firm reaches capacity, or by the associated worker type fully applies to the

firm. Otherwise, for sufficiently high δ, a worker of the class with the maximal match value

would benefit from applying immediately to the firm, and learning their match value. Then, an

extension of the Top-Down algorithm can be used to characterize long-lived workers’ strategies.

One key alteration is necessary. Since, workers have incomplete information, rather than

specifying the application strategy of a given match value, the algorithm now specifies the

application strategy for an entire class. Then, agents no longer behave identically every period.

Instead, workers of a given class follow a descending chain of applications, hunting for their top

match value. When doing so, the mass of each type within a class must decrease by 1− δ every

step as workers retire along the way. However, as δ → 1, this decrease in the mass of the overall

class collapses to zero, and therefore does not affect the limiting outcome.

To proceed, consider the previous Top-Down algorithm, where workers now follow the strat-

egy for their entire class, stopping searching once they have found their proscribed match value.

Notably, when a firm’s capacity is not exhausted in a given iteration, workers immediately learn

if they would achieve the relevant match value upon applying once. Either they are accepted

and learn their actual match value, or they are rejected and learn that they do not have the

match value specified in that step of the procedure. If a firm’s capacity were to be exhausted

for a given iteration, it would be possible for a rejected worker to have access to the associated

match value, but simply be unlucky. Then, equilibrium behavior may require that workers of

such a class apply multiple times to the same firm. Similar to the complete information setting,

one of two cases results, either oversubscription or undersubscription.

Type-convergence holds inductively. Note that there are a finite number of steps, and each

step differs by a continuous function of δ. First, the top type converges as δ → 1. Then, the

distance between the outcomes of M and MI is a continuous function of δ. When types are

discrete, the rest converge immediately as well. �

Proof of Lemma 6

At the first step in which oversubscription occurs in the algorithm of Lemma 1, select the

associated type-θ∗ and firms j∗ and j2. Type-i∗ workers then either apply to j∗ or j2. Those

that fail to apply to j∗ will never return, while those who apply to j∗ are rejected with positive

probability. This generates path dependence in equilibrium. �

Proof of Proposition 5
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To begin, note that congestion implies that the total number of workers hired does not change

under information revelation. In particular, market congestion implies that several workers who

applied to firm j under M were rejected. Furthermore, the rejected workers must have weakly

lower match values than the workers who are hired. If θh was maximally hired at firm j, then

the total payoff for θh at firm j cannot increase. However, since θl must decrease its level of

applications to firm j relative to θh, θl must apply in larger quantities to firms other than j.

|C| = 1 requires θh and θl to share a class. In expectation, their match values at other firms are

equivalent. As such, the net effect is a reduction in the proportion of θl rejected at j, increasing

the congestion at the remaining set of firms. This causes the average payoff of workers at those

firms to decrease. This argument proves parts 1 and 2 of the claim. When m(j) < m(θh)

this can be the only effect on θh type workers, and so their payoff decreases, however type-θl

workers see a commensurate increase in payoff since they are no longer being rejected from firm

j. Therefore, the change in payoffs must be greater for θl relative to θh. �

Proof of Lemma 7

Since types θh and θl are in class c, workers of either type have Gittins indices that are

equal across every firm. As a reminder, the optimal strategy every period for a worker was to

apply to the firm with the highest Gittins index. In particular, a worker stops searching if her

match value at a given firm is above the Gittins index of any other firm. That is, whenever

θls stop searching at some firm j, GIθl(j) ≥ GIθl(j
′)∀j′. Since both worker types are in class

c, this implies that both types follow the same probability distribution over initial applications.

Furthermore, θjh ≥ θ
j
l by assumption, and so θjh ≥ GIθh(j′). Therefore, sθh ≤ sθl . �

Proof of Proposition 6

For any market, M, and profile of payment functions {φj}j∈F , observe that a new market,

Mφ, can be defined to incorporate payment functions into match values.

Definition. Let market M = (F , C,m) be given.

Then, market Mφ = (F ′, C′,m′), where:

1. F ′ = F ,

2. C′ = ∪c∈C{θ′ = (θ1w + φ1(θ), θ
1
f − φ1(θ), . . .)|θ ∈ c},

3. m′(θ′) = m(θ).

Then, observe that Mφ satisfies all the assumptions of the model. Limited liability implies

that match values are always above zero. Furthermore, because wages could only be conditioned
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on match value, not type, the types inMφ satisfy independence conditional on a worker’s class.

Then, Proposition 3 shows that aggregate demand in Mφ satisfies gross substitutes. �

B Extensions Satisfy Gross Substitutes

This section shows that the bandit structure ensures that gross substitutes is satisfied in more

general settings. To do so, I build on Lemma 4 to extend the model in a natural manner. In

each instance, the set of firms remains a simple family of multi-armed bandits, and furthermore,

worker’s Gittins indices are decreasing in each firms’ thresholds. Then, Lemma 4 implies that

gross substitutes is satisfied, and the threshold adjustment process of Theorem 1 can be used to

characterize an equilibrium.

B.1 Gradual Learning

Throughout the paper so far, it has been assumed that workers learn immediately—a type-θ

worker that is hired by firm j learns θjw. In many scenarios, learning requires time, or is noisy.

Here, I show that in markets where workers receive a noisy signal of their match value, aggregate

demand still satisfies gross substitutes.

Noise is parametrized through a normal distribution. When a type-θ worker, i, is hired by

firm j in period t, i observes her utility from the match, which is given by θjw + εi(t). εi(t) is

drawn iid each period from a normal distribution, εi(t) ∼ N(0, ξ), where ξ > 0.

Lemma 11. Aggregate demand satisfies gross substitutes when learning is gradual.

Proof of Lemma 11

To begin, I note that workers face a simple family of multi-armed bandit processes. For any

firm j, associated thresholds, (vj , pj), and type-θ; the expected payoff for type-θ from applying

to j is equivalent to type-θ’s expected payoff from applying to j when learning was instant.

Then, it remains to be shown that GIθ(j, h
θ
t ) is decreasing in (vj , pj). A simple interchange

argument proves the point. Suppose the optimal stopping solution to GIθ(j, h
θ
t ) yielded a larger

value for some (v′j , p
′
j) > (vj , pj). Then, utilize the stopping solution for (v′j , p

′
j) in place of

the original stopping solution for (vj , pj), with one key difference. Observe that the value

from the new solution, under (vj , pj) can be decomposed into two terms, one corresponding

to matches would have been received under (v′j , p
′
j), and a second corresponding to the value

for the additional matches due to the difference between (vj , pj) and (v′j , p
′
j). Then, possibly

through garbling the original stopping solution, a new stopping solution can be characterized

that mimics the original stopping solution for matches above (v′j , p
′
j) on average, while treating
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matches between (v′j , p
′
j) and (vj , pj) as if they had led to rejection. This new stopping solution’s

value can then be decomposed into two terms, one of which is equal to the original stopping

solution’s value, and the second which includes the benefit from matching for a single period,

and is therefore positive.

Last, Lemma 4 implies that individual demand satisfies gross substitutes, and therefore

aggregate demand satisfies gross substitutes. �

B.2 Learning Through Interviews

Similar to the previous result, when workers learn at the interview stage, the gross substitutes

condition holds. Formally, when a type-θ worker applies to firm j, the worker learns θjw, regard-

less of whether she is hired.

Lemma 12. Aggregate demand satisfies gross substitutes when workers learn through interview-

ing.

Proof of Lemma 12

Learning through interviewing simplifies the previous constructions. Previously, when a

type-θ worker applied to a firm with threshold (vj , pj), if θjw > vj she learned as much. If

instead θjw ≤ vj , then she may have been unable to tell whether θjw = vj and she was unlucky

or whether θjw < vj . Now, she faces a simple family of multi-armed bandit processes where

the reward from each bandit j is the realization of Ψj
θ in expectation. Then, by construction,

GIθ(j, h
θ
t ) is decreasing in (vj , pj) and therefore Lemma 4 implies that individual demand satisfies

gross substitutes. It follows that aggregate demand satisfies gross substitutes as well. �

B.3 Heterogeneous Discounting

In practice, different classes of workers may not only have different priors regarding their type,

but they may also retire from the market at different rates. For instance, if different classes also

correspond to different ages of workers, those classes may retire at individual rates. Suppose

each class c retires from the market with probability δc ∈ [0, 1).

Lemma 13. Aggregate demand satisfies gross substitutes when different classes have distinct

discount factors.

Proof of Lemma 13

For each class of workers, the set of firms acts as a multi-armed bandit problem, albeit with

differing values of δc. Furthermore, the monotonicity of the Gittins index in rewards implies
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that GIθ(j, h
i
t) is decreasing in (vj , pj). As such, Theorem 2 implies that each type’s demand

satisfies gross substitutes. By the previous arguments it follows that aggregate demand satisfies

gross substitutes. �
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