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Abstract. A natural invariant of a unibranch curve singularity is the

numerical semigroup of its valuations. In the case when the curve singu-

larity admits a GGm-action, this semigroup also determines the singu-

larity uniquely. The paper [AFS14] proposed a rational-valued function

on curve singularities with GGm-action that leads to an ordering of

singularities according to their geometric complexity. We explore this

function and give a classification of those numerical semigroups for which

the values of this function are above a certain threshold.

1. Introduction

A numerical semigroup N is a subset of non-negative integers N0 that is

closed under addition, contains 0, and such that its complement N0 \N has

finite cardinality, which is called the genus of N . Elements of N0 \ N are

called the gaps of N ; these are denoted by b1 < · · · < bg. We say that a

semigroup N is symmetric if the following holds:

(1.1) i ∈ N0 is a gap if and only if bg − i is not a gap.

Given integers n1 < · · · < nk, we denote by 〈n1, . . . , nk〉 the semigroup

formed by all linear combinations a1n1 + · · ·+ aknk, where ai ∈ N0.

We say that n1 < . . . < nk are minimal generators of a semigroup N if

N = 〈n1, . . . , nk〉 and, for every 2 ≤ i ≤ k, we have that ni /∈ 〈n1, . . . , ni−1〉.
Given a numerical semigroup N = {0, n1, n2, . . . , } = N \ {b1, . . . , bg}, we

call n1, the first non-zero element of N , the multiplicity of N . The sum

w(N) :=

g∑
i=1

(bi − i) =

g∑
i=1

bi −
g(g + 1)

2

is called the Weierstrass weight of N . In this paper, we study a closely

related function

(1.2) R(N) :=
(2g − 1)2∑g

i=1 bi
1
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that was introduced in the work of Alper-Fedorchuk-Smyth [AFS14], and

which is expected to measure the geometric complexity of the singularity.

We partially justify this expectation by classifying all symmetric semigroups

which satisfy the inequality

(1.3) R(N) =
(2g − 1)2∑g

i=1 bi
≤ 4,

and showing that apart from two exceptional cases, all such singularities are

planar singularities of type A.

1.1. Outline of the paper: In order to determine which semigroups satisfy

the equation, we first find an upper bound for the value of each gap. In

turn this enables us to find a relation between the value of a gap and the

value of the preceding gap. Using these facts we show there exists an upper

bound for the sum of the gaps of a semigroup, dependent upon the minimum

generator of the semigroup. This value for the upper bound implies that only

semigroups of minimal generator 2, 3, or 4 can satisfy the inequality. Lastly,

we determine exactly which semigroups satisfy the inequality.

2. Main result

Definition 2.1. One class of numerical semigroups is given by hyperelliptic

semigroups, which are defined to be semigroups generated by two elements

one of which is 2 and the other is an odd integer greater than 1. Hence

every hyperelliptic semigroup can be written as 〈2, 2k + 1〉, where k ≥ 1 is

an integer.

Remark 2.2. Every hyperelliptic semigroup is symmetric. Indeed, for N =

〈2, 2k+ 1〉, the gaps are 1, 3, . . . , 2k−1 and so the symmetry condition (1.1)

is clearly satisfied.

The main result of this paper is the following:

Theorem 2.3. The numerical semigroups that satisfy Inequality (1.3) are

as follows:

(1) All hyperelliptic semigroups.

(2) The symmetric semigroups 〈3, 4〉, 〈3, 5〉, 〈3, 7〉, and 〈4, 5, 6〉.
(3) The non-symmetric semigroups 〈3, 4, 5〉 and 〈3, 5, 7〉.

We begin with a simple

Lemma 2.4.
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(1) A numerical semigroup satisfies (1.3) if and only if it satisfies

(2.1)

g∑
i=1

bi > g(g − 1).

(2) Every hyperelliptic semigroup satisfies Inequality (1.3).

Proof. (1) is immediate and (2) follows from (1) by noting that for a hyper-

elliptic semigroup N = 〈2, 2k + 1〉, we have g = k and

k∑
i=1

bi = 1 + 3 + · · ·+ (2k − 1) = k2 > k2 − k.

�

It remains to establish Theorem 2.3 for non-hyperelliptic semigroups. In

the process, we correct an erroneous claim made in [AFS14, Remark 3.7] re-

garding the classification of symmetric semigroups satisfying Inequality 2.1.

Namely, we note that [AFS14, Remark 3.7] missed the symmetric semigroup

〈4, 5, 6〉 with the gap sequence {1, 2, 3, 7} and genus 4.

The following is the main observation used in the proof of Theorem 2.3.

Lemma 2.5. Suppose N is a numerical semigroup of genus g and {b1, . . . , bg}
are gaps of N . Then bi ≤ 2i− 1.

Proof. Note that because bi is a gap, every pair (k, bi−k), for 1 ≤ k ≤ bbi/2c,
must have at least one gap. Indeed, if neither k nor bi − k is a gap, then

k, bi − k ∈ N implies bi = k + (bi − k) is also in N , which is not the case.

Suppose bi ≥ 2i. Then there exist at least i distinct pairs (k, bi − k) with

1 ≤ k ≤ bbi/2c. Since each such pair must contain at least one gap, there

must be at least i gaps before bi. This contradiction leads us to conclude

that bi ≤ 2i− 1. �

Definition 2.6. When the ith gap satisfies bi = 2i− 1, we will refer to it as

a extremal gap. When bi = 2i− 2, we will refer to it as a sub-extremal gap.

Note that b1 is always extremal because b1 = 1 for every numerical semi-

group of genus g ≥ 1.

Lemma 2.7. bg is always extremal in a symmetric semigroup.

Proof. Each pair (bg − k, k), with k ≤ bg − 1, contains exactly one gap and

one non-gap by the definition of a symmetric semigroup. Hence bg is odd.

Because the number of gaps less than bg is precisely g − 1, it then follows

that bbg/2c = g − 1. �
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In what follows, we denote by n the minimal generator of N .

Lemma 2.8. Suppose bi is extremal and i ≥ 2, then necessarily bi−1 = bi−n.

Suppose bi is sub-extremal and i ≥ 3, then

bi−1 =

bi − n, if n 6= i,

bi − n + 1, if n = i.

Proof of lemma: Following the proof of Lemma 2.5, each pair of integers

(k, bi − k), where 1 ≤ k ≤ bbi/2c, must contain at least one gap. In fact,

we claim that every such pair contains exactly one gap. Indeed, by the

assumption bi = 2i− 1 or bi = 2i− 2, and so i− 1 such pairs exist before bi.

If any of these pairs had two distinct gaps, then there would exist at least i

gaps before bi resulting in a contradiction.

Since n is the minimal generator of N , it follows that 1, 2, . . . , n−1 are all

gaps. If every pair (k, bi − k) for 1 ≤ k ≤ n contains distinct numbers, then

given 1, 2, . . . , n−1 are gaps it must be the case that bi−1, bi−2, . . . , bi−(n−
1) are all non-gaps, and bi − n must be a gap. It follows that bi−1 = bi − n.

Suppose now that k = bi−k for some k ≤ n. Then bi is even and we must

have k = i− 1. Then i− 1 is a gap and since n is not a gap, we must have

n > i − 1. Suppose now n > i − 1. Then bj = j for every j ≤ i − 1. Since

bi = 2i− 2 > i, we must have n = i. In particular, bi−1 = i− 1 = bi−n+ 1.

�

Corollary 2.9. Suppose n ≥ 4. If bi is an extremal or subextremal gap for

some i ≥ 3, then bi−1 is neither extremal nor subextremal. In particular,

i ≥ 4 a posteriori.

Proof. For any i ≥ 3, if bi is extremal then bi−1 = bi − n = 2i − 1 − n =

2(i− 1)− n + 1 < 2(i− 1)− 2, the final step is simply due to n > 4.

Similarly, if bi is sub-extremal, then bi−1 = 2i−2−n+1 = 2(i−1)−n+1 <

2(i− 1)− 2, and again bi−1 is neither extremal nor sub-extremal. �

Lemma 2.10. Suppose N is a non-hyperelliptic semigroup such that b1 and

b2 are its only extremal or sub-extremal gaps. Then

g∑
i=1

bi ≤ g2 − 2g + 3.

For such a semigroup, Inequality (2.1) is not satisfied as long as g ≥ 3 or

n ≥ 4.
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Proof. By assumption bi ≤ 2i − 3 for every 3 ≤ i ≤ g. We obtain the

following inequalities:

g∑
i=1

bi = 1 + 2 +

g∑
i=3

bi

≤ 1 + 2 +

g∑
i=3

(2i− 3)

≤ 1 + 2 + 2

(
g(g − 1)

2
− 2− 1

)
− 3(g − 2)

≤ 1 + 2 + g2 + g − 6− 3g + 6

≤ g2 − 2g + 3.

Hence N can satisfy Inequality (2.1) only if g ≤ 2. To see the last statement

of the lemma, observe that if n is the minimal generator of N , then 1, 2,

and 3 are gaps and so g ≥ 3. �

Proposition 2.11. Suppose n ≥ 4, and N has k ≥ 1 extremal or sub-

extremal gaps bj1 , . . . bjk with j1, . . . , jk ≥ 3. Then

(2.2)

g∑
i=1

bi ≤ g2 − 2g + 3− (n− 6)k.

Moreover, the above inequality is strict if any of the gaps bj1 , . . . bjk is sub-

extremal.

Proof. Let us break the gaps {b1, . . . , bg} into 3 sets:

• A = {b1, b2}, where necessarily b1 = 1 and b2 = 2,

• B = {bj1−1, bj1 , bj2−1, bj2 , . . . , bjk−1, bjk}, and

• C = G − A − B (that is, C consists of non extremal and non sub-

extremal gaps).

By Corollary 2.9, bj1−1, bj2−1, . . . , bjk−1 are neither extremal nor subex-

tremal. Hence B contains precisely 2k elements. Note b3 = 3 is not extremal

or sub-extremal, which implies that j1 ≥ 4, and so A, B, and C are disjoint

sets. Since C cannot have a negative number of elements, we must have

g − 2k − 2 ≥ 0, or k ≤ g−2
2 . We now proceed to estimate the sum of gaps.

First, b1 + b2 = 3. Second, for every pair {jr − 1, jr}, where 1 ≤ r ≤ k,

we have by Lemma 2.8 if bjr is extremal,

bjr−1 + bjr ≤ (2jr − 1− n) + (2jr − 1) = 4jr − n− 2
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and if bjr is sub-extremal.

bjr−1 + bjr ≤ (2jr − 2− n + 1) + (2jr − 2) = 4jr − n− 3

In either case, we have

bjr−1 + bjr ≤ 4jr − n− 2,

with strict inequality if bjr is sub-extremal.

Finally, ∑
bi∈C

bi ≤
∑
bi∈C

(2i− 3)

because gaps in C are neither extremal nor sub-extremal.

Putting this together, we obtain:
g∑

i=1

(bi − (2i− 1)) =
∑
bi∈A

(bi − (2i− 1)) +
∑
bi∈B

(bi − (2i− 1)) +
∑
bi∈C

(bi − (2i− 1))

≤ (0− 1) +
k∑

r=1

(2− n) +
∑
bi∈C

(−2)

≤ −1 +

k∑
r=1

(2− n) + (g − 2k − 2)(−2)

≤ 3− 2g + (6− n)k.

The claim follows using the well-known formula
∑g

i=1(2i− 1) = g2. �

Corollary 2.12. Suppose N is a numerical semigroup with the minimal

generator n > 4. Then N does not satisfy Inequality (2.1).

Proof. By Proposition 2.11 we know
∑

bi ≤ g2− 2g + 3− (n− 6)k. We aim

to show g2 − 2g + 3− (n− 6)k ≤ g(g − 1), or equivalently,

(2.3) − g + 3− (n− 6)k ≤ 0

We break this into two cases, if n ≥ 6 then it follows that 1, 2, . . . , 5 are

gaps and g ≥ 3 therefore the inequality is satisfied as (n− 6) ≤ 0, g ≥ 3.

If n = 5 then we show −g + 3 + k ≤ 0. But as shown in Proposition

2.11 k ≤ g−2
2 , so we consider −g + 3 + g−2

2 . Then, −2g + 6 + g − 2 ≤ 0,

which in turn implies −g + 4 ≤ 0, however if n = 5 then g ≥ 4 proving the

corollary. �

Corollary 2.13. Suppose N is a numerical semigroup with the minimal

generator n = 4. Then N satisfies Inequality (2.1) if and only if N =

〈4, 5, 6〉.
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Proof. By Equation 2.3 we find that in order for the inequality to be satisfied

−g + 3 + 2k > 0, when k takes its maximum value we find that k = g−2
2 ,

leaving the inequality as −g + 3 + g − 2 > 0, or 1 > 0.

Next we note that if the inequality in Proposition 2.11 is strict, this

inequality cannot be satisfied. This in turn implies that the gaps pairs must

be all extremal after 1, 2. If any were not extremal or sub-extremal then

k would not be maximized, additionally if any were sub-extremal then the

inequality would be strict.

However, 4, 5, 6 are all not gaps, as 1, 2, 3 make up the first three gaps,

then b4 = 7 as it must be extremal. But if 4, 5, 6 are not gaps this uniquely

determines the semigroup implying that there exists a unique semigroup

with minimal generator n = 4 which satisfies the inequality. �

Summarizing, we can conclude that numerical semigroups with n > 4

cannot satisfy Inequality (2.1) and the only semigroup with n = 4 satisfying

Inequality (2.1) is N = 〈4, 5, 6〉. To finish the proof of Theorem 2.3, it

remains to only discuss the cases n = 3.

The case of n = 3. Since the minimal generators of a numerical semi-

group have different residue classes modulo n, any semigroup with n = 3

would have at most 3 minimal generators. Therefore, we break our analysis

into two cases: semigroups in the form 〈3,m〉 or 〈3,m, l〉.

Proposition 2.14. Suppose N = 〈3,m〉, where 3 < m, satisfies Inequality

(1.3), then N = 〈3, 4〉, 〈3, 5〉, or 〈3, 7〉.

Proof. Numerical semigroups of two generators are well-studied. It follows

from the formula (32) in [Rød94] that

(a) g = m− 1.

(b)

g∑
i=1

bi =
5m2 − 9m + 4

6
.

Substitute into (2.1) yields m2 − 9m + 8 < 0, which holds if and only if

3 < m < 8. Using the condition gcd(3,m) = 1, we obtain m ∈ {4, 5, 7}. �

Proposition 2.15. Suppose N = 〈3,m, l〉, where 3 < m < l, satisfies

Inequality (1.3), then N = 〈3, 4, 5〉 or 〈3, 5, 7〉.

Proof. Assume m ≡ 1 (mod 3) and l ≡ 2 (mod 3). Then

N0 \ 〈3,m, l〉 = {1, 4, . . . ,m− 3} ∪ {2, 5, . . . , l − 3}

consists of two arithmetic sequences. We calculate
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(a) g =
m + l − 3

3
.

(b)

g∑
i=1

bi =
(m− 1)(m− 2) + (l − 1)(l − 2)

6
.

If we assume that m ≡ 2 (mod 3) and l ≡ 1 (mod 3), the results remain

the same. Inequality (2.1) for N = 〈3,m, l〉 holds iff

(2.4) m2 + l2 + 9m + 9l − 4ml − 24 > 0.

Note l can only take values from the gaps of 〈3,m〉. By [Rød94] the largest

gap of 〈3,m〉 is 2m− 3. Hence

m + 1 ≤ l ≤ 2m− 3.

In particular, m = 4 forces l = 5, and m = 5 forces l = 7; one checks that

both satisfy Inequality (2.4).

It remains to consider m ≥ 7, where we apply some basic calculus. Let

f(m, l) denote the left-hand-side in equation (2.4), and evaluate at l = m+1,

f(m,m + 1) = −2(m− 7)(m− 1) < 0 for m ≥ 7.

Fixing m, the derivative of f(m, l) with respect to l is 2l+9−4m, which is

negative when l < 2m− 4.5. In particular, this derivative is always negative

for l ∈ [m + 1, 2m − 3]. Thus no numerical semigroup 〈3,m, l〉 with m ≥ 7

satisfies Inequality (1.3). �

Both 〈3, 4, 5〉 and 〈3, 5, 7〉 are non-symmetric semigroups. In fact,

Corollary 2.16. Suppose N = 〈3,m, l〉, where 3 < m < l, then N is not

symmetric.

Proof. Suppose not. By Lemma 2.7, the largest gap bg of 〈3,m, l〉 is ex-

tremal. Recall bg = l − 3 and g = m+l−3
3 from the preceding proof. The

equality bg = 2g−1 then becomes l = 2m, which contradicts l ≤ 2m−3. �

We conclude, as in Theorem 2.3, the numerical semigroups that satisfy

(1.3) are

(1) All hyperelliptic semigroups

(2) Symmetric: 〈3, 4〉, 〈3, 5〉, 〈3, 7〉, 〈4, 5, 6〉.
(3) Non-symmetric: 〈3, 4, 5〉, 〈3, 5, 7〉.



GEOMETRIC INVARIANTS OF NUMERICAL SEMIGROUPS 9

References

[AFS14] Jarod Alper, Maksym Fedorchuk, and David Ishii Smyth, Singularities with Gm-

action and the log minimal model program for Mg, 2014, To appear in Journal

für die Reine und Angewandte Mathematik, DOI: 10.1515/crelle-2014-0063.

[Rød94] Øystein J. Rødseth, A note on T. C. Brown and P. J.-S. Shiue’s paper: “A

remark related to the Frobenius problem” [Fibonacci Quart. 31 (1993), no. 1,

32–36; MR1202340 (93k:11018)], Fibonacci Quart. 32 (1994), no. 5, 407–408.

MR 1300276


	1. Introduction
	1.1. Outline of the paper:

	2. Main result
	References

